Supporting Information

© Wiley-VCH 2005

69451 Weinheim, Germany
Convergent Diversity-Oriented Synthesis of Small-Molecule Hybrids

Chuo Chen, Xiaodong Li, Christopher S. Neumann, Michael M.-C. Lo and Stuart L. Schreiber*

General Procedures. All reactions with air and moisture-sensitive materials were performed in flame-dried glassware under a positive pressure of argon. Flash column chromatography was performed as described by Still et al.[1] employing E. Merck silica gel 60 (230–400 mesh ASTM). TLC analyses were performed on triethylamine-deactivated 250 µm Silica Gel 60 F254 plates purchased from EM Science and visualized by quenching of UV fluorescence (λ_{max}=254 nm) or by staining with ceric ammonium molybdate. The enantiomeric ratios of the azomethine ylide cycloaddition products were determined by HPLC using Chiralpak AS column or Chiralcel OD column with 1 mL/min flow rate and monitored by UV fluorescence at 230 nm and 205 nm after released from the solid support.[2] Diastereomeric ratios of the sublibrary coupling products were determined by 1H NMR spectroscopy. Quality assessment of the library was performed by LC/MS on a Micromass Platform LCZ mass spectrometer in ESI mode attached to a Waters 2690 HPLC system. The LC/MS chromatography was performed on a Waters Symmetry C18 3.5 WM, 2.1 mm × 50 mm column using a flow rate of 0.4 ml/min and a 10 min gradient of 15→100% CH$_3$CN in H$_2$O, constant 0.1% formic acid with 200–450 nm detection on a Waters 996 photodiode array detector.

Materials. Commercial solvents and reagents were used as received with the following exceptions. Anhydrous solvents were dispensed from a delivery system which passes the solvents through packed columns (tetrahydrofuran, methylene chloride, acetonitrile: dry neutral alumina; benzene: dry neutral alumina and Q5 reactant; N,N-dimethylformamide: activated molecular sieves). Chloroform, methanol Hünig’s base, triethylamine and 2,6-lutidine were distilled under nitrogen from calcium hydride. tert-Butyl acrylate was distilled under vacuum (ca. 30 mmHg) from calcium hydride. (+)-β-Pinene is no longer commercially available after 2003 and can be prepared from (+)-α-pinene according to the literature procedure.[3] 3-Indoleacetonitrile was purchased from ACROS Organics and purified by HPFC Biotage system with a pre-packed flash silica gel column.
Sublibrary and Library Nomenclature; Structures of Demonstration Compounds

(+)/(−)-I Bicyclic alkaloid sublibrary
(+)/(−)-II 2,5-Diketopiperazine sublibrary
(+)/(−)-III Spirooxindole sublibrary
(+)/(−)-IV Bicyclic Alkaloid-diketopiperazine hybrid library
(+)/(−)-V Spirooxindole-diketopiperazine hybrid library

I-abc II-def III-ghi IV-abcdef V-ghidef

a — pinene: (+) = 1; (−) = 2
b — nitrile (R^1): Me = 1; i-Bu = 2; (MeO)_3PhCH_2 = 3
c — amine cap (R^2): 4-BrPhN_2 = 1; 4-(NO_2)PhN_2 = 2; Me = 3; (MeO)_3PhCH_2 = 4
d — QUINAP: (R) = 1; (S) = 2
e — phenolic aldehyde (R^3): 4-(HO)Ph = 1; 3-F-4-(HO)Ph = 2; 3-(HOCH_2CH_2O)Ph = 3
f — amino acid (R^4): H (Gly) = 1; (R)-i-Bu (D-Leu) = 2; (S)-Bn (L-Phe) = 3; (R)-(CH_2)_3 (D-Pro) = 4
g — auxiliary: (+) = 1; (−) = 2
h — (2-hydroxyethoxy)phenyl (R^5): p = 1; m = 2
i — dipolarophile (R^6): C(O)Me = 1; CN = 2; C(O)NMMe(OMe) = 3; COOAllyl = 4
Library Molecular Weight Distribution

- Bicyclic Alkaloid-Diketopiperazine Hybrid Library IV
- Spirooxindole-Diketopiperazine Hybrid Library V

Library Calculated Log P versus Molecular Weight

- Bicyclic Alkaloid-Diketopiperazine Hybrid Library IV
- Spirooxindole-Diketopiperazine Hybrid Library V
Synthesis of Sublibrary I

General procedure for the mercury(II) catalyzed Ritter reaction. To a suspension of mercury(II) trifluoromethanesulfonate and the nitrile (5.0 equiv) in methylene chloride or chloroform cooled at the indicated temperature was added (+)- or (–)-β-pinene (1.0 equiv). After stirred for the indicated period of time, the reaction was quenched by 1 M sodium carbonate, extracted with methylene chloride and washed again with 1 M sodium carbonate. The crude imine was dried over sodium sulfate, concentrated and dissolved in methylene chloride. Sodium triacetoxylborohydride (2.5 equiv) was added and the solution was stirred for 3 h. The reaction was quenched with 1 M sodium carbonate, extracted with methylene chloride, washed again with 1 M sodium carbonate, dried over sodium sulfate and concentrated. The crude amine was dissolved in diethyl ether and extracted with 1 N hydrogen chloride (10 equiv). The acidic aqueous solution was washed twice with diethyl ether followed by basified with 1 N sodium hydroxide (20 equiv) and extracted with methylene chloride for three times. The combined methylene chloride extracts were then dried over sodium sulfate and concentrated to give the corresponding amine as analytically pure material.
(1R,4R,5S)-2,2,4-trimethyl-6-methylene-3-azabicyclo[3.3.1]nonane. \([\alpha]^{27}_D +114.0^\circ\) (c 1.43, CHCl\(_3\)); \(R_f = 0.55\) (25% ethyl acetate-hexanes); FTIR (neat, cm\(^{-1}\)) 3333, 3059, 3025, 3001, 2919, 2869, 1605, 1494, 1458, 1415, 1090, 1035, 1021, 745, 697; \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 4.71 (dd, \(J = 2.4, 2.4\) Hz, 1H), 4.53 (dd, \(J = 2.4, 2.4\) Hz, 1H), 3.19 (qd, \(J = 6.4, 2.8\) Hz, 1H), 2.73 (dddd, \(J = 14.3, 14.3, 6.5, 3.4\) Hz, 1H), 2.19-2.13 (m, 2H), 2.07-2.02 (m, 2H), 1.61 (dd, \(J = 12.7, 3.4, 2.9\) Hz, 1H), 1.49 (dddd, \(J = 13.7, 13.7, 6.5, 3.9\) Hz, 1H), 1.22 (s, 3H), 0.93 (d, \(J = 6.4\) Hz, 3H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 149.6, 108.9, 53.0, 44.6, 35.9, 33.0, 31.7, 29.8, 28.9, 27.5, 21.1; HRMS(ES\(^+\)) calcd for C\(_{12}\)H\(_{22}\)N (M+H\(^+\)) \(180.1752\), found 180.1751.

(1R,4R,5S)-2,2-dimethyl-4-(2-methylpropyl)-6-methylene-3-azabicyclo[3.3.1]nonane. \([\alpha]^{28}_D +129.4^\circ\) (c 1.18, CHCl\(_3\)); \(R_f = 0.69\) (25% ethyl acetate-hexanes); FTIR (neat, cm\(^{-1}\)) 3064, 2954, 2921, 2867, 1638, 1455, 1436, 1377, 1363, 1260, 1239, 1144, 1125, 882, 655, 636; \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 4.69 (dd, \(J = 2.4, 2.4\) Hz, 1H), 4.53 (dd, \(J = 2.4, 2.4\) Hz, 1H), 3.08 (td, \(J = 6.8, 2.4\) Hz, 1H), 2.78 (ddddd, \(J = 14.2, 14.2, 6.3, 2.5, 2.4\) Hz, 1H), 2.16-2.13 (m, 3H), 2.06-2.02 (m, 1H), 1.66-1.57 (m, 2H), 1.48 (dddd, \(J = 13.7, 13.7, 6.3, 4.4\) Hz, 1H), 1.41-1.39 (m, 1H), 1.22 (s, 3H), 1.16-1.11 (m, 1H), 1.13 (s, 3H), 1.08-1.03 (m, 1H), 0.88 (d, \(J = 6.3\) Hz, 3H), 0.85 (d, \(J = 6.8\) Hz, 3H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 150.3, 108.4, 53.0, 51.8, 44.3, 42.9, 36.5, 33.2, 31.9, 29.9, 29.1, 27.4, 24.1, 22.9, 22.8; HRMS(ES\(^+\)) calcd for C\(_{15}\)H\(_{28}\)N (M+H\(^+\)) \(222.2222\), found 222.2225.

(1R,4R,5S)-2,2-dimethyl-6-methylene-4-(3,4,5-trimethoxybenzyl)-3-azabicyclo[3.3.1]nonane. \([\alpha]^{27}_D +111.1^\circ\) (c CHCl\(_3\)); \(R_f = 0.18\) (20% ethyl acetate-hexanes); FTIR (neat, cm\(^{-1}\)) 2930, 2833, 1587, 1506, 1458, 1420, 1330, 1239, 1123, 1011, 806; \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 6.42 (s, 2H, H\(_{14}\)), 4.77 (dd, \(J = 2.4, 2.4\) Hz, 1H, H\(_{17}\)), 4.58 (dd, \(J = 2.4, 2.4\) Hz, 1H, H\(_{17}'\)), 3.87, (s, 3H, OC\(_3\)H\(_3\)), 3.84, (s, 6H, OCH\(_3\)), 3.31 (ddd, \(J = 7.8, 5.9, 2.9\) Hz, 1H, H\(_4\)), 3.02, (ddddd, \(J = 13.7, 13.6, 6.3, 2.5, 2.4\) Hz, 1H, H\(_7\)), 2.55 (dd, \(J = 13.7, 5.9\) Hz, 1H, H\(_{12}\)), 2.40 (dd, \(J = 13.7, 7.8\) Hz, 1H, H\(_{12}'\)), 2.21-2.04 (m, 4H, H\(_{8,7,9,8}\)), 1.59 (ddd, \(J = 12.7, 3.4, 2.9\) Hz, 1H, H\(_9\)), 1.49 (dddd, \(J = 13.6, 13.5, 6.0, 4.1\) Hz, 1H, H\(_8\)), 1.42-1.40 (m, 1H, H\(_1\)), 1.18 (s, 3H, H\(_{10\ or\ 11}\)), 1.11 (s, 3H, H\(_{10\ or\ 11}\)); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 152.9, 150.6, 136.0, 135.5, 108.7, 106.0, 60.8, 56.0, 55.7, 53.0, 43.0, 42.1, 36.5, 33.2, 31.9, 29.7, 29.2, 27.1; HRMS(ES\(^+\)) calcd for C\(_{21}\)H\(_{32}\)NO\(_3\) (M+H\(^+\)) \(346.2382\), found 346.2385.
General procedure for the triazene formation. To a solution of aryldiazonium tetrafluoroborate (1.0 equiv) in methanol (0.2–0.5 M) cooled at 4 °C was added a solution of the amine (1.0 equiv) in methylene chloride (0.1–0.25 M) followed by pyridine (3.0 equiv). This solution was stirred at 4 °C for 30 min before a solution of potassium hydroxide (1.0 M in water, 2.0 equiv) was added. After warmed to room temperature, brine was added and the solution was extracted three times with methylene chloride. The organic extracts were dried over sodium sulfate and concentrated to give the corresponding triazene with >90% purity by 1H NMR. The crude triazenes were used directly for the subsequent hydroboration reactions.

\[\text{(1R,4R,5S)-3-[2-(4-bromophenyl)-1-azenyl]-2,2,4-trimethyl-6-methylene-3-azabicyclo[3.3.1]nonane.} \quad R_f = 0.67 (20\% \text{ethyl acetate-hexanes); FTIR (neat, cm}^{-1}) \]
\[2976, 2927, 2865, 1463, 1477, 1454, 1436, 1260, 1231, 1103, 1069, 1003, 892, 832; \]
\[^1H \text{NMR (600 MHz, CDCl}_3 \delta 7.44 (d, } J = 8.8 \text{ Hz, 2H, H}_{13 \text{ or } 14}, \) 7.31 (d, } J = 8.8 \text{ Hz, 2H, H}_{13 \text{ or } 14}, \) 4.75 (dd, } J = 2.0, 2.0 \text{ Hz, 1H, H}_{17}, 4.66 (dd, } J = 2.0, 2.0 \text{ Hz, 1H, H}_{17}, 3.94 (qd, } J = 5.9, 5.9 \text{ Hz, 1H, H}_{4}, 2.52-2.49 (m, 1H, H_{5}), 2.40 (dd, } J = 14.2, 14.2, 5.0, 2.0 \text{ Hz, 1H, H}_7), 2.27-2.24 (m, 1H, H_{5}), 2.20-2.16 (m, 2H, H_{7',9}), 1.79-1.77 (m, 1H, H_1), 1.72 (s, 3H, H_{18 \text{ or } 19}), 1.70 (dd, } J = 12.7, 3.4, 3.4 \text{ Hz, 1H, H}_9), 1.53 (dd, } J = 13.7, 13.7, 5.0, 4.4 \text{ Hz, 1H, H}_{8'}), 1.37 (d, } J = 5.9 \text{ Hz, 3H, H}_{16}), 1.34 (s, 3H, H_{18 \text{ or } 19}), ^{13}C \text{NMR (100 MHz, CDCl}_3 \delta 150.1 (C_{12 \text{ or } 15}), 149.8 (C_{12 \text{ or } 15}), 131.8 (C_{13 \text{ or } 14}), 122.3 (C_{13 \text{ or } 14}), 118.8 (C_6), 109.6 (C_{17}), 63.3 (C_2), 54.5 (C_4), 45.7 (C_5), 39.5 (C_1), 30.7, 30.0 (C_{18 \text{ or } 19}), 29.7, 29.5, 27.7 (C_{18 \text{ or } 19}), 19.1 (C_{16}); \text{HRMS(ES}^+) \text{calcd for } C_{18}H_{25}BrN_3 (M+H)^+ 362.1232, \text{found 262.1241.} \]

\[\text{(1R,4R,5S)-3-[2-(4-bromophenyl)-1-azenyl]-2,2-dimethyl-4-(2-methylpropyl)-6-methylene-3-azabicyclo[3.3.1]nonane.} \quad R_f = 0.65 (20\% \text{ethyl acetate-hexanes); FTIR (neat, cm}^{-1}) \]
\[3067, 2953, 2933, 1888, 1643, 1476, 1454, 1431, 1231, 1156, 889, 828; ^1H \text{NMR (500 MHz, CDCl}_3 \delta 7.44 (d, } J = 8.8 \text{ Hz, 2H, H}_{13 \text{ or } 14}, \) 7.31 (d, } J = 8.8 \text{ Hz, 2H, H}_{13 \text{ or } 14}, \) 4.78 (dd, } J = 2.0, 2.0 \text{ Hz, 1H, H}_{20}, 4.67 (dd, } J = 2.0, 2.0 \text{ Hz, 1H, H}_{20}), 3.97 (dd, } J = 8.3, 8.3, 2.0 \text{ Hz, 1H, H}_{4}), 2.82-2.78 (m, 1H, H_5), \]
2.33 (dd, \(J = 13.7, 13.7, 4.9 \) Hz, 1H, H\(7 \)), 2.27-2.23 (m, 1H, H\(7 \)), 2.20 (dd, \(J = 13.7, 4.9 \) Hz, 1H, H\(8 \)), 2.11 (ddd, \(J = 13.2, 8.3, 2.0 \) Hz, 1H, H\(16 \)), 1.94 (ddd, \(J = 13.2, 8.3, 4.9 \) Hz, 1H, H\(8' \)), 1.38 (s, 3H, H\(21 \) or 22), 1.13 (ddd, \(J = 13.7, 13.7, 4.9 \) Hz, 1H, H\(9 \)), 1.10 (d, \(J = 6.3 \) Hz, 3H, H\(18 \) or 19), 0.83 (d, \(J = 6.3 \) Hz, 3H, H\(18 \) or 19); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta \) 150.5 (C\(12 \) or 15), 150.0 (C\(12 \) or 15), 131.8 (C\(13 \) or 14), 122.2 (C\(13 \) or 14), 118.6 (C\(6 \)), 109.7 (C\(20 \)), 63.6 (C\(2 \)), 57.9 (C\(4 \)), 42.0 (C\(5 \)), 39.1 (C\(1 \)), 38.0 (C\(16 \)), 31.6 (C\(21 \) or 22), 30.0 (C\(9 \)), 30.2 (C\(7 \)), 29.7 (C\(8 \)), 27.8 (C\(21 \) or 22), 26.1 (C\(17 \)), 23.6 (C\(18 \) or 19), 22.1 (C\(18 \) or 19); HRMS(ES\(^+\)) calcd for C\(_{21}\)H\(_{31}\)BrN\(_3\) (M+H\(^+\)) 404.1701, found 404.1711.

(1\(R\),4\(R\),5\(S\))-3-[2-(4-bromophenyl)-1-azenyl]-2,2-dimethyl-4-(3,4,5-trimethoxybenzyl)-6-methylene-3-azabicyclo[3.3.1]nonane. \(R_f = 0.39 \) (20% ethyl acetate-hexanes); FTIR (neat, cm\(^{-1}\)) 2936, 2836, 1647, 1588, 1505, 1458, 1417, 1238, 1126, 1099, 1005, 828; \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta \) 7.47 (d, \(J = 8.8 \) Hz, 2H), 7.35 (d, \(J = 8.8 \) Hz, 2H), 6.77 (s, 2H), 4.93 (s, 1H), 4.69 (s, 1H), 4.18 (dd, \(J = 6.8, 6.8 \) Hz, 1H), 3.86 (s, 6H), 3.85-3.83 (m, 1H), 2.42 (ddd, \(J = 13.7, 13.7, 5.4 \) Hz, 1H), 2.34-2.30 (m, 1H), 2.28 (dd, \(J = 13.7, 9.3 \) Hz, 1H), 2.08 (ddd, \(J = 13.2, 5.4, 2.4 \) Hz, 1H), 1.86-1.83 (m, 1H), 1.84 (s, 3H), 1.69 (ddd, \(J = 13.2, 3.4, 3.4 \) Hz, 1H), 1.57 (ddd, \(J = 13.7, 13.7, 4.4, 4.4 \) Hz, 1H), 1.40 (s, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta \) 152.8, 150.7, 149.1, 149.9, 136.3, 136.1, 131.9, 122.3, 119.1, 110.7, 106.3, 64.1, 60.9, 56.1, 41.0, 39.2, 34.7, 31.8, 30.6, 30.3, 29.9, 27.6; HRMS(ES\(^+\)) calcd for C\(_{27}\)H\(_{35}\)BrN\(_3\)O\(_3\) (M+H\(^+\)) 528.1862, found 528.1870.

(1\(R\),4\(R\),5\(S\))-3-[2-(4-nitrophenyl)-1-azenyl]-2,2,4-trimethyl-6-methylene-3-azabicyclo[3.3.1]nonane. \(R_f = 0.55 \) (20% ethyl acetate-hexanes); FTIR (neat, cm\(^{-1}\)) 2976, 2935, 2865, 1645, 1599, 1588, 1508, 1429, 1335, 1267, 1228, 1103, 853; \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta \) 8.20 (d, \(J = 8.8 \) Hz, 2H), 7.48 (d, \(J = 8.8 \) Hz, 2H), 4.78 (dd, \(J = 2.0, 2.0 \) Hz, 1H), 4.60 (dd, \(J = 2.0, 2.0 \) Hz, 1H), 4.09 (qd, \(J = 6.3, 5.9 \) Hz, 1H), 2.58-2.56 (m, 1H), 2.36-2.17 (m, 4H), 1.85-1.82 (m, 1H), 1.76-1.72 (m, 1H), 1.74 (s, 3H), 1.59-1.52 (m, 1H), 1.42 (s, 3H), 1.40 (d, \(J = 6.3 \) Hz, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta \) 156.0, 149.1, 144.8, 124.9, 120.7, 110.1, 64.5, 55.6, 45.2, 39.2, 30.4, 29.5, 29.4, 27.7, 18.7; HRMS(ES\(^+\)) calcd for C\(_{18}\)H\(_{25}\)N\(_3\)O\(_2\) (M+H\(^+\)) 329.1977, found 329.1969.
General procedure for the reductive methylation of amines. To a solution of the amine (1.0 equiv) in acetonitrile (0.1–0.2 M) was added a solution of formaldehyde (36% in water, 2.0 equiv) followed by sodium triacetoxyborohydride (1.5 equiv). After stirred at room temperature for 3 h, brine was added and the solution was extracted three times with methylene chloride. The organic layer was dried over sodium sulfate and concentrated to give the corresponding tertiary amine. The \(^1\)H NMR spectra of
the crude tertiary amines showed >95% purity. The crude amines were used directly for the subsequent hydroboration reactions.

(1R,4R,5S)-2,2,3,4-tetramethyl-6-methylene-3-azabicyclo[3.3.1]nonane. $R_f = 0.74$ (20% ethyl acetate-hexanes); FTIR (neat, cm$^{-1}$) 3064, 2976, 2927, 2896, 2771, 1768, 1640, 1456, 1374, 1358, 1253, 1094, 880; 1H NMR (500 MHz, CDCl$_3$) δ 4.64 (dd, $J = 2.4$, 2.4 Hz, 1H), 4.49 (dd, $J = 2.4$, 2.4 Hz, 1H), 3.09-3.00 (m, 1H), 2.62 (qd, $J = 6.3$, 2.9 Hz, 1H), 2.15-2.13 (m, 1H), 2.12-2.04 (m, 3H), 2.09 (s, 3H), 1.50 (ddd, $J = 12.2$, 2.9, 2.9 Hz, 1H), 1.45-1.37 (m, 2H), 1.20 (s, 3H), 1.02 (d, $J = 6.3$ Hz, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 151.3, 107.4, 58.8, 56.1, 47.4, 40.7, 34.1, 32.9, 31.7, 29.5, 28.9, 20.4, 17.4; HRMS(ES$^+$) calcd for C$_{13}$H$_{14}$N (M+H)$^+$ 194.1909, found 194.1905.

(1R,4R,5S)-2,2,3-trimethyl-4-(2-methylpropyl)-6-methylene-3-azabicyclo[3.3.1]nonane. $R_f = 0.71$ (20% ethyl acetate-hexanes); FTIR (neat, cm$^{-1}$) 3068, 2953, 2777, 1638, 1458, 1374, 1360, 1090, 883; 1H NMR (500 MHz, CDCl$_3$) δ 4.67 (dd, $J = 2.4$, 2.4 Hz, 1H), 4.52 (dd, $J = 2.4$, 2.4 Hz, 1H), 3.08-3.00 (m, 1H), 2.48 (ddd, $J = 8.8$, 3.4, 3.4 Hz, 1H), 2.32-2.30 (m, 1H), 2.12-2.02 (m, 3H), 2.11 (s, 3H), 1.68-1.62 (m, 1H), 1.51 (ddd, $J = 12.7$, 2.9, 2.9 Hz, 1H), 1.44-1.36 (m, 2H), 1.30 (ddd, $J = 13.2$, 9.3, 3.9 Hz, 1H), 1.20 (s, 3H), 1.13 (ddd, $J = 13.7$, 8.8, 4.9 Hz, 1H), 1.03 (s, 3H), 0.85 (d, $J = 6.8$ Hz, 6H); 13C NMR (100 MHz, CDCl$_3$) δ 152.1, 107.5, 59.4, 57.2, 43.2, 41.0, 40.5, 34.3, 32.9, 32.0, 29.8, 29.3, 25.3, 24.3, 22.0, 17.7; HRMS(ES$^+$) calcd for C$_{16}$H$_{30}$N (M+H)$^+$ 236.2378, found 236.2375.

(1R,4R,5S)-2,2,3-trimethyl-4-(3,4,5-trimethoxybenzyl)-6-methylene-3-azabicyclo[3.3.1]nonane. $R_f = 0.42$ (20% ethyl acetate-hexanes); FTIR (neat, cm$^{-1}$) 2930, 1640, 1597, 1492, 1456, 1413, 1381, 1340, 1238, 1124, 1106, 1040, 880; 1H NMR (500 MHz, CDCl$_3$) δ 6.42 (s, 2H), 4.76 (dd, $J = 2.4$, 2.4 Hz, 1H), 4.47 (dd, $J = 2.4$, 2.4 Hz, 1H), 3.85 (s, 6H), 3.83 (s, 3H), 3.16-3.10 (m, 1H), 3.00 (dd, J = 13.7, 3.7 Hz, 1H), 2.80 (ddd, $J = 9.7$, 3.7, 3.4 Hz, 1H), 2.31 (dd, $J = 13.7$, 9.7 Hz, 1H), 2.25 (s, 3H), 2.19-2.18 (m, 1H), 2.15-2.04 (m, 3H), 1.47-1.37 (m, 3H), 1.25 (s, 3H), 1.08 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 152.7, 151.9, 136.7, 135.9, 108.8, 106.6, 63.6, 60.9, 57.5, 56.1, 42.4, 40.5, 38.2, 35.0, 33.1, 32.1, 29.9, 29.1, 17.8; HRMS(ES$^+$) calcd for C$_{22}$H$_{34}$NO$_3$ (M+H)$^+$ 360.2539, found 360.2548.
Procedure for the tetracyclic core formation via Pictet-Spengler reaction. To a solution of 2,2-dimethyl-6-methylene-4-(3,4,5-trimethoxybenzyl)-3-azabicyclo[3.3.1]nonane in acetonitrile (0.1 M) was added a solution of formaldehyde (36% in water, 2.0 equiv) followed by acetic anhydride (10.0 equiv). This solution was stirred at 60 °C for 18 h. After cooled to room temperature, saturated sodium bicarbonate was added and the solution was extracted three times with methylene chloride. The organic extracts were dried over sodium sulfate and concentrated. The crude amine was dissolved in diethyl ether and extracted with 1 N hydrogen chloride (10 equiv). The acidic aqueous solution was washed twice with diethyl ether followed by basified with 1 N sodium hydroxide (20 equiv) and extracted with methylene chloride for three times. The combined organic extracts were dried over sodium sulfate and concentrated to give the corresponding tetracyclic amine with >90% purity by \(^1\)H NMR. The crude amine was used directly for the subsequent hydroboration reaction.

\((1R,12R,13S)-2,2\text{-dimethyl-6,7,8-\text{trimethoxy-14-methylene-benzo[e]-3-azatricyclo[7.3.1.0}^{5,10}\text{]tridecane}}. R_f = 0.59 (40\% \text{ethyl acetate-hexanes}); \text{FTIR (neat, cm}^{-1}\text{)} 2930, 1638, 1599, 1495, 1456, 1415, 1383, 1345, 1240, 1126, 1106, 1040, 883; \text{\(^1\)H NMR (500 MHz, CDCl}_3\text{)} \delta 6.37 (s, 1H, H_9), 4.70 (dd, \text{J} = 2.4, 2.4 \text{ Hz}, 1H, H_20), 4.59 (dd, \text{J} = 2.4, 4.4 \text{ Hz}, 1H, H_20'), 4.04 (d, \text{J} = 15.6 \text{ Hz}, 1H, H_4), 3.88 (s, 3H, OCH}_3, 3.83 (s, 3H, OCH}_3, 3.80 (s, 3H, OCH}_3), 3.33 (d, \text{J} = 15.6 \text{ Hz}, 1H, H_4'), 2.94 (ddd, \text{J} = 13.7, 13.2, 5.9, 2.4 \text{ Hz}, 1H, H_15), 2.88 (ddd, \text{J} = 11.2, 3.9, 3.4 \text{ Hz}, 1H, H_{12}), 2.77 (dd, \text{J} = 16.6, 11.2 \text{ Hz}, 1H, H_{11}), 2.37 (dd, \text{J} = 16.6, 3.4 \text{ Hz}, 1H, H_{11'}), 2.35-2.32 (m, 1H, H_{13}), 2.21 (ddd, \text{J} = 12.7, 5.9, 2.9 \text{ Hz}, 1H, H_{17}), 2.14 (dd, \text{J} = 13.2, 4.4 \text{ Hz}, 1H, H_{15'}), 2.07 (dd, \text{J} = 13.8, 5.9, 1H, H_{16}), 1.60 (ddd, \text{J} = 12.7, 3.4, 2.9 \text{ Hz}, 1H, H_{17'}), 1.56-1.53 (m, 1H, H_1), 1.46 (ddddd, \text{J} = 13.8, 13.7, 5.6, 4.4 \text{ Hz}, 1H, H_{16'}), 1.35 (s, 3H, H_{18 \text{or} 19}), 1.22 (s, 3H_{18 \text{or} 19}); \text{\(^{13}\)C NMR (125 MHz, CDCl}_3\text{)} \delta 152.1, 151.7, 149.6, 139.6, 130.5, 121.5, 108.0, 106.5, 60.9, 60.6, 56.8, 56.0, 54.6, 45.0, 43.5, 41.4, 35.0, 31.9, 31.7, 29.4, 28.2, 19.6; \text{HRMS(ES}^+)\text{ calcd for C}_{22\text{H}_{32}\text{NO}_3} \text{(M+H)}^+ 358.2382, \text{found 358.2375.}
General procedure for the hydroboration-oxidation of olefins. To a solution of the alkene (1.0 equiv) in tetrahydrofuran (0.2 M) was added a solution of boran-tetrahydroborane complex (1.0 M in tetrahydroboran, 1.5 equiv). This solution was stirred at room temperature for 3.5 h before a solution of hydrogen peroxide (30% in water, 1.2 equiv) and sodium hydroxide (3.0 M in water, 4.5 equiv) was added. After another 2h stirring, brine was added and the solution was extracted three times with methylene chloride. The organic layer was dried over sodium sulfate and concentrated to give the corresponding alcohol with >90% purity by 1H NMR. The crude alcohols were used directly for the subsequent sublibrary coupling reactions. A portion of **I-123**, **I-211**, **I-132** and **I-234** was purified by triethylamine-deactivated silica gel column chromatography with 2% triethylamine in ethyl acetate-hexanes as the eluent for analytical purposes.

(1R,4R,5S,6R)-3-[2-(4-bromophenyl)-1-azenyl]-6-hydroxymethyl-2,2,4-trimethyl-3-azabicyclo[3.3.1]nonane (**I-211**). $[\alpha]^{28}_D +55.7^\circ$ (c 1.18, CHCl$_3$); $R_f = 0.29$ (50% ethyl acetate-hexanes); FTIR (neat, cm$^{-1}$) 3346 (br), 2927, 1477, 1456, 1392, 1379, 1360, 1231, 1153, 1140, 1065, 1003, 828; 1H NMR (500 MHz, CDCl$_3$) δ 7.43 (d, $J = 8.8$ Hz, 2H), 7.27 (d, $J = 8.8$ Hz, 2H), 4.08 (dq, $J = 6.8$, 6.3 Hz, 1H), 3.79 (dd, $J = 10.3$, 5.9 Hz, 1H), 3.74 (dd, $J = 10.3$, 8.8 Hz, 1H), 2.26 (ddd, $J = 13.7$, 2.4, 2.4 Hz, 1H), 2.21-2.16 (m, 2H), 1.90 (ddddd, $J = 8.8$, 8.3, 7.8, 5.9 Hz, 1H), 1.72 (s, 3H), 1.70-1.66 (m, 3H), 1.62 (ddd, $J = 14.2$, 3.9, 3.4 Hz, 1H), 1.55 (d, $J = 6.3$ Hz, 3H), 1.54-1.48 (m, 2H), 1.37 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 150.3, 131.8, 122.2, 118.5, 67.7, 63.8, 57.8, 47.7, 41.0, 37.8, 32.8, 28.7, 28.0, 27.0, 23.2, 19.5; HRMS(ES$^+$) calcd for C$_{18}$H$_{27}$BrN$_3$O (M+H)$^+$ 380.1337, found 380.1335.

(1R,4S,5R,6S)-6-hydroxymethyl-3-[2-(4-nitrophenyl)-1-azenyl]-2,2-dimethyl-4-(3,4,5-trimethoxybenzyl)-3-azabicyclo[3.3.1]nonane (**I-132**). $[\alpha]^{28}_D +429.0^\circ$ (c 0.33, CHCl$_3$); $R_f = 0.38$ (100% ethyl acetate); FTIR (neat, cm$^{-1}$) 3482 (br), 2930, 1584, 1506, 1456, 1424, 1331, 1231, 1126, 1103, 1005, 855, 735; 1H NMR (500 MHz, CDCl$_3$) δ 8.13 (d, $J = 9.0$ Hz, 2H),
7.26 (d, J = 9.0 Hz, 2H), 6.42 (s, 2H), 4.47 (dd, J = 6.3, 6.0 Hz, 1H), 4.02 (dd, J = 10.3, 7.7 Hz, 1H), 3.97 (dd, J = 7.7, 7.7 Hz, 1H), 3.87-3.81 (m, 2H), 3.78 (s, 3H), 3.71 (s, 6H), 3.61-3.58 (m, 1H), 2.38-2.31 (m, 2H), 2.13 (d, J = 12.2 Hz, 1H), 2.06-2.00 (m, 1H), 1.75-1.71 (m, 2H), 1.68 (s, 3H), 1.61 (s, 3H), 1.59-1.43 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 156.2, 153.1, 144.4, 136.1, 124.9, 120.2, 105.3, 66.8, 66.5, 64.9, 60.9, 56.0, 44.6, 41.1, 38.8, 36.9, 35.2, 27.9, 27.8, 21.6; HRMS(ES⁺) calcd for C₀₇H₁₂N₄O₆ (M+H⁺) 513.2713, found 513.2711.

(1S,4S,5R,6S)-6-hydroxymethyl-2,2,3-trimethyl-4-(2-methylpropyl)-3-azabicyclo[3.3.1]nonane (I-123). [α]₃⁰D −2.5° (c 0.82, CHCl₃); R₇ = 0.21 (25% ethyl acetate-hexanes); FTIR (neat, cm⁻¹) 3320 (br), 2953, 2865, 2777, 1461, 1376, 1365, 1247, 1165, 1024, 994, 933, 735; ¹H NMR (500 MHz, CDCl₃) δ 3.74 (dd, J = 9.8, 5.4 Hz, 1H, H₁₇), 3.62 (dd, J = 9.8, 8.8 Hz, 1H, H₁₇'), 2.65 (dd, J = 5.4, 5.4 Hz, 1H, H₄), 2.28 (dd, J = 25.1, 12.2, 4.6 Hz, 1H, H₇), 2.14-2.08 (m, 2H, H₈,₉), 2.06 (s, 3H, H₁₂), 1.86-1.79 (m, 2H, H₆,₅), 1.60 (qq, J = 6.8, 6.3 Hz, 1H, H₁₄), 1.54-1.35 (m, 6H, H₁₈,₇',₉',₁₃,₈,₁), 1.19-1.14 (m, 1H, H₁₃'), 1.18 (s, 3H, H₁₀ or ₁₁), 0.98 (s, 3H, H₁₀ or ₁₁), 0.88 (d, J = 6.3 Hz, 3H, H₁₅ or ₁₆), 0.85 (d, J = 6.8 Hz, 3H, H₁₅ or ₁₆); ¹³C NMR (125 MHz, CDCl₃) δ 67.7 (C₁₇), 61.0 (C₄), 57.8 (C₂), 47.5 (C₆), 43.1 (C₁₃), 40.9 (C₉), 36.6 (C₅), 35.1 (C₉), 34.0 (C₁₂), 29.0 (C₀), 28.8 (C₁₀ or ₁₁), 27.2 (C₁₄), 25.0 (C₇), 23.3 (C₁₅ or ₁₆), 22.9 (C₁₅ or ₁₆), 17.0 (C₁₀ or ₁₁); HRMS(ES⁺) calcd for C₁₆H₃₂NO (M+H⁺) 254.2484, found 254.2478.

(1R,12R,13S,14R)-14-hydroxymethyl-2,2-dimethyl-6,7,8-trimethoxybenzo[ɛ]-3-azatricyclo[7.3.1.0₅¹₀]tridecane (I-234). [α]₂⁷D +50.3° (c 0.26, CHCl₃); R₇ = 0.18 (50% ethyl acetate-hexanes); FTIR (neat, cm⁻¹) 3385 (br), 3330, 1597, 1495, 1458, 1415, 1383, 1335, 1242, 1108, 1035, 944; ¹H NMR (500 MHz, CDCl₃) δ 6.37 (s, 1H), 3.98 (d, J = 15.4 Hz, 1H), 3.87 (s, 3H), 3.83 (s, 3H), 3.82 (s, 3H), 3.78-3.71 (m, 2H), 3.36 (d, J = 15.4 Hz, 1H), 3.05 (ddd, J = 10.0, 3.9, 3.4 Hz, 1H), 2.91 (dd, J = 15.4, 10.0 Hz, 1H), 2.55 (dd, J = 15.4, 3.9 Hz, 1H), 2.21-2.16 (m, 3H), 2.05-1.98 (m, 1H), 1.91-1.83 (m, 1H), 1.55-1.40 (m, 4H), 1.32 (s, 3H), 1.16 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 151.6, 149.5, 139.8, 131.1, 122.1, 106.2, 68.4, 60.9, 60.6, 57.4, 57.1, 56.0, 48.5, 43.0, 41.6, 37.2, 35.0, 34.0, 28.7, 28.0, 25.0, 19.8; HRMS(ES⁺) calcd for C₂₂H₃₄NO₄ (M+H⁺) 376.2488, found 376.2482.
Synthesis of Sublibrary II

General procedure for the [3+2] cycloaddition reactions. To a suspension of [(4-methoxyphenyl)di-iPr-propylsilyl]propyl functionalized 500-600 µm polystyrene beads (ca. 1.4 mmol/g, incubated with 2.5% v/v trimethylsilyl chloride in methylene chloride for 1 h and then washed with dry methylene chloride (3×) before use) in methylene chloride was added a solution of trifluoromethanesulfonic acid (3% v/v in methylene chloride, 6.0 equiv). After 30 min, the resulting orange [di-iPr-propyl(trifluoromethane-sulfonyl)silyl]propyl polystyrene were washed with dry methylene chloride (3×). A solution of hydroxyl aldehyde (3.0 equiv) in methylene chloride was then introduced and the suspension was tumbled at room temperature for 16 h to give the polystyrene-bound aromatic aldehyde after washed with methylene chloride (3×), tetrahydrofuran (3×) and again methylene chloride (3×) and then dried under vacuum for 24 h. To this polystyrene-bound aromatic aldehyde (1.0 equiv) was added a solution of methyl glycinate (5.0 equiv) (from the solution after treatment of glycine methyl ester hydrochloride benzene solution with potassium hydroxide pellets (10.0 equiv)) in benzene-N,N-dimethylformamide-methanol (8:1:1, 0.1 M). This suspension was heated at 90 °C for 16 h. The clear solution was filtered off and the beads were washed sequentially with methylene chloride (3×), tetrahydrofuran (3×) and methylene chloride (3×), dried under vacuum for 24 h to afford the desired iminoester as pale yellow beads. To a suspension of the polystyrene-bound iminoester obtained above (1.0 equiv) in tetrahydrofuran was added the silver(I) acetate/(S)-QUINAP catalyst solution (1:1.2, 0.01 M in tetrahydrofuran, 0.1 equiv). This solution was cooled to −45 °C followed by addition of tert-butyl acrylate (10 equiv) and Hünig’s base (0.2 equiv). After stirred for 72 h, the colorless solution was filtered off and the pale orange beads were washed sequentially with tetrahydrofuran (3×), triphenylphosphine in tetrahydrofuran (0.05 M, 3×), tetrahydrofuran (3×) and methylene chloride (3×), and dried, affording the polystyrene-bound pyrrolidine as pale yellow beads. A portion of the polystyrene-bound pyrrolidine obtained above (ca. 100 beads) was treated with a solution of hydrogen fluoride-pyridine/pyridine in tetrahydrofuran (5%-5% v-v/v, 0.01 mL/bead) for 2 h followed by quenched with ethoxytrimethylsilane (0.02 mL/bead). The polystyrene beads were filtered off and washed with methylene chloride (3×). The filtrate was collected, concentrated and purified by silica
gel column chromatography with ethyl acetate-hexanes as the eluent to give pure pyrrolidines for analytical purposes.

tert-butyl (2R,4R,5S)-5-(4-hydroxyphenyl)-2-methoxycarbonylpyrroloidin-4-carboxylate. Error! Bookmark not defined. 90% ee (Chiralpak AS column, 10% iso-propanol-hexanes; t_R(minor) = 16.7 min, t_R(major) = 20.4 min); ^1^H NMR (500 MHz, CDCl_3) δ 7.18 (d, J = 8.8 Hz, 2H), 6.74 (d, J = 8.0 Hz, 1H), 4.42 (d, J = 8.0 Hz, 1H), 3.93 (t, J = 8.5 Hz, 1H), 3.81 (s, 3H), 3.22 (td, J = 7.9, 6.3 Hz, 1H), 2.46-2.40 (m, 1H), 2.34-2.28 (m, 1H), 1.08 (s, 9H).

tert-butyl (2S,4S,5R)-5-(3-fluoro-4-hydroxyphenyl)-2-methoxycarbonylpyrroloidin-4-carboxylate. [α]^{27}_D +12.0° (90% ee, c 0.64, CH₃OH-CHCl₃ (1:1)); R_f = 0.46 (ethyl acetate); FTIR (neat, cm⁻¹) 3001, 2973, 2953, 2927, 1738, 1704, 1522, 1433, 1383, 1363, 1279, 1217, 1147; ^1^H NMR (500 MHz, CD₃OD-CDCl₃ (1:1)) δ 7.00 (dd, J = 12.0, 1.7 Hz, 1H), 6.91 (dd, J = 8.3, 2.0 Hz, 1H), 6.85 (dd, J = 8.8, 8.3 Hz, 1H), 4.32 (d, J = 7.3 Hz, 1H), 3.88 (dd, J = 8.3, 8.3 Hz, 1H), 3.79 (s, 3H), 3.19 (ddd, J = 7.8, 7.8, 5.4 Hz, 1H), 2.46-2.40 (m, 1H), 2.27-2.22 (m, 1H), 1.07 (s, 9H); ^13^C NMR (125 MHz, CD₃OD-CDCl₃ (1:1)) δ 174.1, 172.8, 151.8 (d, J = 239.3 Hz), 144.8 (d, J = 12.5 Hz), 130.5 (d, J = 6.0 Hz), 123.4 (d, J = 3.0 Hz), 117.9 (d, J = 3.0 Hz), 115.2 (d, J = 19.5 Hz), 81.7, 65.0, 59.7, 52.7, 50.6, 34.3, 27.8; HRMS(ES⁺) calcd for C₁₇H₂₃FNO₅ (M+H)^+ 340.1560, found 340.1551. This compound was bis-methylated with methyl iodide (5 equiv) and potassium carbonate (10 equiv) in acetone at room temperature for 5 h to determine its enantiomeric purity.

tert-butyl (2S,4S,5R)-5-(3-fluoro-4-methoxyphenyl)-2-methoxycarbonyl-1-methylpyrroloidin-4-carboxylate. [α]^{27}_D +36.5° (c 0.51, CHCl₃); 90% ee (Chiralcel OD column, 2% iso-propanol-hexanes; t_R(major) = 8.9 min, t_R(minor) = 12.4 min); R_f = 0.47 (25% ethyl acetate-hexanes); FTIR (neat, cm⁻¹) 2982, 2953, 2845, 2788, 1750, 1727, 1620, 1581, 1513, 1438, 1367, 1274, 1153, 1026, 760; ^1^H NMR (500 MHz, CDCl₃) δ 7.17 (dd, J = 12.7, 2.0 Hz, 1H), 7.12 (d, J = 8.3 Hz, 1H), 6.88 (dd, J = 8.3, 8.3 Hz, 1H), 3.86 (s, 3H), 3.78 (s, 3H), 3.70 (d, J = 10.3 Hz, 1H), 3.22 (dd, J = 10.3, 6.8 Hz, 1H), 3.16 (dd, J = 18.6, 8.8 Hz, 1H), 2.51 (ddd, J = 12.7, 10.3, 8.8 Hz, 1H), 2.26-2.04 (m, 1H), 2.25 (s, 3H), 1.06 (s, 9H); ^13^C NMR (100 MHz, CDCl₃) δ 173.1, 170.7, 152.2 (d, J = 243.7 Hz), 147.1 (d, J = 10.5 Hz), 133.1 (d,
$J = 5.9$ Hz), 124.4 (d, $J = 3.2$ Hz), 116.6 (d, $J = 19.2$ Hz), 113.0, 80.5, 71.5, 67.2, 56.5, 52.1, 48.8, 39.7, 31.7, 28.1, 27.6; HRMS(ES$^+$) calcd for C$_{19}$H$_{28}$FNO$_5$ (M+H)$^+$ 368.1873, found 368.1870.

tert-butyl (2S,4S,5R)-2-methoxycarbonyl-5-(3-(2-hydroxyethoxy)phenyl)pyrrolidin-4-carboxylate. $[\alpha]^{27}_D +16.5^\circ$ (c 0.34, CHCl$_3$); 85% ee (Chiralpak AS column, 20% isopropanol-hexanes; t_R(major) = 9.6 min, t_R(minor) = 19.1 min); R_f = 0.26 (ethyl acetate); FTIR (neat, cm$^{-1}$) 2976, 2950, 2933, 2868, 1734, 1602, 1581, 1442, 1367, 1253, 1215, 1151; 1H NMR (500 MHz, CDCl$_3$) δ 7.20 (dd, $J = 8.3$, 8.3 Hz, 1H), 6.94-6.93 (m, 2H), 6.78 (d, $J = 7.3$ Hz, 1H), 4.42 (d, $J = 7.8$ Hz, 1H), 4.05-4.04 (m, 2H), 3.94-3.89 (m, 3H), 3.79 (s, 3H), 3.22 (dd, $J = 13.7$, 7.8 Hz, 1H), 2.67 (br, 2H), 2.44-2.38 (m, 1H), 2.31-2.26 (m, 1H), 1.04 (s, 9H); 13C NMR (125 MHz, CDCl$_3$) δ 173.7, 171.8, 158.6, 141.0, 129.2, 120.0, 113.6, 113.5, 80.7, 69.3, 65.4, 61.3, 59.8, 52.3, 50.1, 34.0, 27.5; HRMS(ES$^+$) calcd for C$_{19}$H$_{28}$NO$_6$ (M+H)$^+$ 366.1916, found 366.1917.

General procedure for the 2,5-diketopiperazine formation reactions. To the pyrrolidines obtained above was added N-Boc-protected amino acids (Gly, d-Leu, l-Phe and d-Pro) (5.0 equiv) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC, 5.0 equiv) in methylene chloride-N,N-dimethylformamide (95:5, 0.1 M). After agitated at room temperature for 16 h, the solution was filtered off and the beads were washed sequentially with methylene chloride (3×), tetrahydrofuran (3×), methylene chloride (3×), and dried under vacuum for 24 h. These white beads were then swelled in methylene chloride and added a equal volume of trimethylsilyl trifluoromethanesulfonate (2.0 M, 10.0 equiv) and 2,6-lutidine (3.0 M) in methylene chloride (final concentration: 1.0 M trimethylsilyl trifluoromethanesulfonate, 1.5 M 2,6-lutidine). This suspension was heated at 40 °C for 4 h followed
by washed with methylene chloride (3×), tetrahydrofuran (3×), methylene chloride (3×), and dried under vacuum for 16 h. These yellow-light orange beads were then incubated with 7.5% triethylamine-7.5 % methanol in N,N-dimethylformamide-methylene chloride (10 equiv, 1:1) at room temperature for 24 h followed by washed with N,N-dimethylformamide-methylene chloride (1:1, 3×), methylene chloride (3×) and dried under vacuum for 24 h to give the polystyrene-bound 2,5-diketopiperazine as yellow to orange beads. A portion of the polystyrene-bound diketopiperazine intermediates of the demonstration compounds (II-213, II-214, II-121, II-132) obtained above (ca. 100 beads) was treated with a solution of hydrogen fluoride-pyridine/pyridine in tetrahydrofuran (5%-5% v-v/v, 0.01 mL/bead) for 2 h followed by quenched with ethoxytrimethylsilane (0.02 mL/bead). The polystyrene beads were filtered off and washed with methanol (3×). The filtrate was collected, concentrated and purified by air- and ammonia-deactivated silica gel column chromatography with methanol-methylene chloride as the eluent to give pure 2,5-diketopiperazine for analytical purposes.

(3S,6R,8R,9S)-3-Benzyl-9-(4-hydroxyphenyl)-2,5-dioxo-1,4-diazabicyclo[4.3.0]nonan-8-carboxylate (II-213). [α]$_{D}^{28}$ +26.0° (c 0.23, CH$_3$OH); R_f = 0.56 (30% methanol-methylene chloride); FTIR (neat, cm$^{-1}$) 3235 (br), 1668, 1613, 1513, 1415, 1292, 1256, 1106, 1026, 846; 1H NMR (500 MHz, CD$_3$OD) δ 7.36-7.31 (m, 3H), 7.25-7.23 (m, 2H), 6.94 (d, J = 8.5 Hz, 2H), 6.61 (d, J = 8.5 Hz, 2H), 5.16 (d, J = 9.3 Hz, 1H, H$_9$), 4.09 (dd, J = 5.4, 5.4 Hz, 1H, H$_3$), 3.19 (dd, J = 13.7, 5.4 Hz, 1H, H$_{10}$), 3.05-2.97 (m, 3H, H$_8$,6,10), 2.28 (ddd, J = 12.7, 12.7, 12.7 Hz, 1H, H$_7$), 1.99 (ddd, J = 12.7, 6.3, 5.9 Hz, 1H, H$_7'$); 13C NMR (125 MHz, CD$_3$OD) δ 176.1, 171.9, 168.4, 157.9, 137.2, 131.1, 130.3, 129.8, 129.5, 128.6, 115.7, 63.4, 60.4, 58.8, 51.1, 49.8, 40.3, 29.5; HRMS(ES$^+$) calcd for C$_{21}$H$_{21}$N$_2$O$_5$ (M+H)$^+$ 381.1450, found 381.1456.

(3R,5R,6S,9R)-6-(4-Hydroxyphenyl)-2,8-dioxo-1,7-diazatricyclo[7.3.0.03,7]dodecan-5-carboxylate (II-214). [α]$_{D}^{28}$ +154.3° (c 0.16, CH$_3$OH); R_f = 0.32 (40% methanol-methylene chloride); FTIR (neat, cm$^{-1}$) 3201 (br), 2984, 2879, 1654, 1609, 1513, 1406, 1238, 1172, 844; 1H NMR (500 MHz, CD$_3$OD) δ 6.89 (d, J = 8.5 Hz, 2H, H$_{13}$), 6.62 (d, J = 8.5Hz, 2H, H$_{14}$), 5.25 (d, J = 8.8 Hz, 1H, H$_6$), 4.56 (dd, J = 11.2, 6.8 Hz, 1H, H$_3$), 4.37 (dd, J = 7.3, 7.3 Hz, 1H, H$_9$),
3.58-3.55 (m, 2H, H12), 3.45 (ddd, J = 13.2, 8.8, 6.3 Hz, 1H, H5), 2.57 (ddd, J = 13.2, 13.2, 11.2 Hz, 1H, H4), 2.28-2.20 (m, 2H, H4,10), 2.00-1.94 (m, 3H, H10',11); 13C NMR (125 MHz, CD3OD) δ 175.4, 169.1, 169.0, 157.9, 130.4, 129.3, 115.8, 62.7, 62.0, 61.5, 51.5, 49.8, 46.2, 28.5, 28.3, 24.4; HRMS(ES+) calcd for C17H19N2O5 (M+H)+ 331.1294, found 331.1298.

(6S,8S,9R)-9-(3-Fluoro-4-hydroxyphenyl)-2,5-dioxo-1,4-diazabicyclo[4.3.0]nonan-8-carboxylate (II-121). [α]27D −113.3° (90% ee, c 0.94, CH3OH); Rf = 0.17 (40% methanol-methylene chloride); FTIR (neat, cm⁻¹) 3227 (br), 1670, 1579, 1518, 1442, 1406, 1297, 1110; 1H NMR (600 MHz, CD3OD) δ 6.84 (d, J = 11.7 Hz, 1H), 6.78-6.76 (m, 2H), 5.24 (d, J = 8.8 Hz, 1H, H9), 4.47 (ddd, J = 11.3, 6.3, 1.1 Hz, 1H, H4), 4.11 (dd, J = 16.8, 1.5 Hz, 1H, H3), 3.68 (d, J = 16.8 Hz, 1H, H3'), 3.39 (ddd, J = 14.1, 8.8, 5.8 Hz, 1H, H8), 2.50 (ddd, J = 14.1, 13.2, 11.3 Hz, 1H, H7), 2.27 (ddd, J = 13.2, 6.3, 5.8 Hz, 1H, H7'); 13C NMR (100 MHz, CD3OD) δ 175.8, 172.8, 167.5, 152.3 (d, J = 238.3 Hz), 145.4 (d, J = 133.3 Hz), 131.6 (d, J = 5.0 Hz), 124.2 (d, J = 3.2), 118.1 (d, J = 3.2 Hz), 116.2 (d, J = 19.6 Hz), 62.6, 59.9, 51.7, 47.3, 29.1; HRMS(ES+) calcd for C14H14FN2O5 (M+H)+ 309.0886, found 309.0885.

(6S,8S,9R)-9-(3-(2-Hydroxyethoxy)phenyl)-3-(2-methylpropyl)-2,5-dioxo-1,4-diazabicyclo[4.3.0]nonan-8-carboxylate (II-132). [α]27D −88.8° (c 0.17, CH3OH); Rf = 0.17 (40% methanol-methylene chloride); FTIR (neat, cm⁻¹) 3309 (br), 2959, 2868, 2828, 1668, 1581, 1445, 1411, 1294, 1251, 1028, 880; 1H NMR (500 MHz, CD3OD) δ 7.12 (dd, J = 7.8, 7.8 Hz, 1H, H15), 6.77 (dd, J = 8.3, 2.4 Hz, 1H), 6.73-6.71 (m, 2H), 5.28 (d, J = 8.8 Hz, 1H, H9), 4.57 (dd, J = 11.7, 6.3 Hz, 1H, H6), 4.00-3.98 (m, 2H, H17), 3.84-3.78 (m, 3H, H18,3), 3.42 (ddd, J = 13.2, 8.8, 5.8 Hz, 1H, H8), 2.51 (ddd, J = 13.2, 12.7, 11.7 Hz, H7), 2.29 (ddd, J = 12.7, 6.3, 5.8 Hz, H7'), 1.82-1.73 (m, 2H, H11,10), 1.61-1.55 (m, 1H, H10'), 0.99 (d, J = 6.3 Hz, 3H, H12), 0.95 (d, J = 6.3 Hz, 3H, H12'); 13C NMR (100 MHz, CD3OD) δ 174.8, 172.0, 169.6, 160.0, 140.9, 130.0, 120.6, 114.70, 114.67, 70.4, 63.7, 61.7, 59.1, 57.4, 50.5, 42.2, 29.2, 25.7, 23.3, 21.8; HRMS(ES+) calcd for C20H27N2O6 (M+H)+ 391.1869, found 391.1878.
Synthesis of Sublibrary III

\((E)-(5\text{-}iodo\text{-}2\text{-}oxindolin\text{-}3\text{-}yldene)\text{propan\text{-}2\text{-}one}\). To a solution of 1-triphenylphosphoranylidene-2-propanone (25 mmol, 1.0 equiv) in tetrahydrofuran (150 mL) was added 5-iodoisatin (25 mmol, 1.0 equiv). The reaction was stirred at room temperature for 18 h before quenched with 1.0 N hydrochloric acid (200 mL) and extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate, concentrated in vacuo and purified by flash column chromatography (ethyl acetate-hexanes) followed by two recrystallizations (tetrahydrofuran-hexanes) to yield \((E)-(5\text{-}iodo\text{-}2\text{-}oxindolin\text{-}3\text{-}yldene)\text{propan\text{-}2\text{-}one}\) (4.22 g, 54%) as a red solid: \(^1H\text{-}NMR\) (500 MHz; acetone-\(d_6\)) \(\delta\) 9.79 (br, 1H), 8.84 (d, \(J = 1.8\) Hz, 1H), 7.71 (dd, \(J = 8.3, 1.8\) Hz, 1H), 7.14 (s, 1H), 6.81 (d, \(J = 8.3\) Hz, 1H), 2.51 (s, 3H); \(^{13}C\text{-}NMR\) (100 MHz; acetone-\(d_6\)) \(\delta\) 199.4, 168.7, 145.5, 142.1, 137.0, 134.9, 129.6, 123.7, 113.2, 84.4, 32.1.

\((E)-(5\text{-}iodo\text{-}2\text{-}oxindolin\text{-}3\text{-}yldene)\text{acetonitrile}\). To a solution of lithium bromide (33 mmol, 1.3 equiv) in tetrahydrofuran (150 mL) was added diethyl (cyanomethyl)phosphonate (25 mmol, 1.0 equiv) and triethylamine (33 mmol, 1.3 equiv). The reaction was stirred at room temperature for 30 min before addition of 5-iodoisatin (25 mmol, 1.0 equiv). After stirred at room temperature for 7 h, the reaction was quenched with 1.0 N hydrochloric acid (200 mL) and extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate, concentrated in vacuo and purified by flash column chromatography (8% acetonitrile-benzene) followed by recrystallization (tetrahydrofuran-hexanes) to yield \((E)-(5\text{-}iodo\text{-}2\text{-}oxindolin\text{-}3\text{-}yldene)\text{acetonitrile}\) (3.98 g, 54%) as a red solid: \(^1H\text{-}NMR\) (500 MHz, acetone-\(d_6\)) \(\delta\) 9.91 (br, 1H), 8.25 (d, \(J = 1.8\) Hz, 1H), 7.79 (dd, \(J = 8.0, 1.8\) Hz, 1H), 6.90 (d, \(J = 8.0\) Hz, 1H), 6.51 (s, 1H); \(^{13}C\text{-}NMR\) (100 MHz, acetone-\(d_6\)) \(\delta\) 166.0, 145.2, 143.4, 142.9, 133.4, 123.0, 116.9, 114.0, 99.6, 84.5, HRMS(EI\(^+\)) calcd for C\(_{10}\)H\(_5\)IN\(_2\)O (M\(^+\)) 295.9447, found 295.9454.

\((E)-(5\text{-}iodo\text{-}2\text{-}oxindolin\text{-}3\text{-}yldene)\text{-}N\text{-}methoxy\text{-}N\text{-}methylacetamide\). To a solution of diethyl (N-methoxy-N-methylcarbamoylmethyl)phosphonate (2.1 mmol, 1.2 equiv) in tetrahydrofuran (15 mL) cooled at –78 °C was added a solution of \(n\)-butyl lithium (1.6 M in hexanes, 1.3 mL, 1.2 equiv) and stirred for 30 min before a solution of 5-iodoisatin (1.75 mmol, 1.0 equiv) in tetrahydrofuran (10 mL) was added. The reaction
stirred at the same temperature for 18 h followed by quenched with saturated ammonium chloride (25 mL). After warmed to room temperature, the mixture was extracted three times with diethyl ether. The combined organic layers were dried over magnesium sulfate, concentrated in vacuo, and purified by flash column chromatography (50% ethyl acetate-hexanes) to afford (E)-2-(5-iodo-2-oxoindolin-3-ylidene)-N-methoxy-N-methylacetamide (257 mg, 41%) as a yellow solid: ¹H NMR (500 MHz, CDCl₃) δ 8.78 (br, 1H), 8.06 (br, 1H), 7.62 (dd, J = 8.0, 2.0 Hz, 1H), 7.40 (s, 1H), 6.65 (d, J = 8.5 Hz, 1H), 3.78 (s, 3H), 3.38 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.70, 165.19, 142.20, 140.41, 136.93, 135.11, 123.66, 122.59, 111.88, 85.38, 62.32, 32.44, 29.68; HRMS(ES⁺) calcd for C₁₂H₁₁IN₂O (M+H)⁺, 358.9892; found, 358.9896.

General procedure for the sublibrary III synthesis. To the polystyrene-bound aldehyde loaded in the same fashion as described above was added 5,6-diphenyl-4-morpholin-2-one (3.0 equiv), dipolarophile (3.0 equiv), magnesium perchlorate (1.3 equiv), pyridine (4.5 equiv), and trimethyl orthoformate (6.5 equiv) and toluene (0.014 M). This solution was tumbled for 72 h and the beads were filtered, washed with methylene chloride (3×), tetrahydrofuran (3×), N,N-dimethylformamide (3×), tetrahydrofuran (3×), methylene chloride (3×), and dried under vacuum for 24 h to give the polystyrene-bound spirooxindole as orange beads. A single bead of the polystyrene-bound spirooxindole intermediates of the demonstration compounds (III-121, III-222, III-213, III-214) was treated with a solution of hydrogen fluoride-pyridine/pyridine in tetrahydrofuran (5%-5% v-v/v, 0.03 mL) for 2 h followed by quenched with ethoxytrimethylsilane (0.06 mL). The polystyrene beads were filtered off and washed with methylene chloride (3×). The filtrate was collected and concentrated to give the corresponding spirooxindole for quality analysis. These four spirooxindole intermediates were synthesized separately in solution and purified by silica gel column chromatography with ethyl acetate as the eluent followed by preparative HPLC (ZORBAX® Rx-SIL column (9.4 × 250 mm, 5 µm) in normal phase or ZORBAX® Eclipse XDB-C18 column (9.4 × 250 mm, 5 µm) in reverse phase) to give pure spirooxindole for analytical purposes.
(3S,2’S,3’S,6’R,7’S,9’S)-Spiro[(5-iodoindol-2-one)-3,8’-(7’-acetyl-9’-(3-(2-hydroxyethoxy)phenyl)-5’-oxo-2’,3’-diphenyl-1’-aza-4’-oxa-bicyclo[4.3.0]nonane)] (III-121). \([\alpha]^3_{D} +62.0^\circ\) (c 0.90, CH$_3$OH); \(R_f = 0.20\) (75% ethyl acetate); FTIR (neat, cm$^{-1}$) 3286 (br), 2929, 2875, 1738, 1732, 1714, 1488, 1471, 1453, 1359, 1316, 1256, 1179, 1126, 1080, 1059, 981, 886, 816, 737, 699; \(^1\)H NMR (500 MHz, CDCl$_3$) \(\delta\) 7.79 (s br, 1H), 7.51 (s, 1H), 7.42 (d, 1H, \(J=8.2\)), 7.26-7.27 (m, 4H), 7.17-7.23 (m, 3H), 7.06-7.14 (m, 5H), 6.78 (d, 1H, \(J=7.3\)), 6.74 (dd, 1H, \(J=1.9, 8.2\)), 6.67 (s, 1H), 6.42 (d, 1H, \(J=8.2\)), 6.22 (d, 1H, \(J=3.1\)), 5.18 (d, 1H, \(J=7.9\)), 4.99 (s, 1H), 4.22 (m, 2H), 3.64-3.90 (m, 4H), 1.89 (s, 3H); \(^{13}\)C NMR (100 MHz, CDCl$_3$) \(\delta\) 200.1, 175.5, 171.1, 158.5, 139.4, 137.9, 136.0, 135.5, 135.3, 134.6, 129.5, 128.7, 128.6, 128.3, 128.0, 127.9, 127.6, 125.5, 111.7, 85.1, 77.2, 76.2, 75.4, 69.3, 60.9, 60.8, 60.5, 59.6, 40.7; HRMS(ES$^+$) calcd for C$_{36}$H$_{32}$IN$_2$O$_6$ (M+H)$^+$ 715.1305, found 715.1307.

(3R,2’R,3’R,6’S,7’S,9’R)-Spiro[(5-iodoindol-2-one)-3,8’-(7’-cyano-9’-(3-(2-hydroxyethoxy)phenyl)-5’-oxo-2’,3’-diphenyl-1’-aza-4’-oxa-bicyclo[4.3.0]nonane)] (III-222). \([\alpha]^9_{D} +29^\circ\) (c 0.056, CH$_3$OH); \(R_f = 0.30\) (75% ethyl acetate-hexanes); FTIR (neat, cm$^{-1}$) 3389 (br), 2925, 1728, 1711, 158.5, 139.4, 137.9, 136.0, 135.5, 135.3, 134.6, 129.5, 128.7, 128.6, 128.3, 128.0, 127.9, 127.6, 125.5, 111.7, 85.1, 77.2, 76.2, 75.4, 69.3, 60.9, 58.9, 55.9, 29.2; \(^{13}\)C NMR (100 MHz, CDCl$_3$) \(\delta\) 174.2, 168.6, 158.6, 140.3, 138.7, 135.2, 135.0, 134.9, 134.8, 129.8, 128.6, 128.5, 128.43, 128.39, 128.2, 126.9, 125.8, 120.0, 115.3, 112.7, 85.3, 77.7, 73.4, 69.2, 61.1, 61.0, 60.5, 59.6, 40.7; HRMS(ES$^+$) calcd for C$_{35}$H$_{29}$IN$_3$O$_5$ (M+H)$^+$ 698.1152, found 698.1154.

(3R,2’R,3’R,6’S,7’S,9’R)-Spiro[(5-iodoindol-2-one)-3,8’-(9’-(3-(2-hydroxyethoxy)phenyl)-7’-(N-methoxy-N-methylamino)carbonyl-5’-oxo-2’,3’-diphenyl-1’-aza-4’-oxa-bicyclo[4.3.0]nonane)] (III-213). \([\alpha]^{30}_{D} +32^\circ\) (c 0.009, CH$_3$OH); \(R_f = 0.14\) (75% ethyl acetate-hexanes); FTIR (neat, cm$^{-1}$) 3250 (br) 315, 1731, 1714, 1667, 1651, 1613, 1512, 1471, 1454, 1392, 1306, 1249, 1181, 1127, 1060, 991, 953, 916, 886, 816, 737, 699; \(^1\)H NMR (500 MHz, CDCl$_3$) \(\delta\) 7.79 (s br, 1H), 7.51 (s, 1H), 7.42 (d, 1H, \(J=8.2\)), 7.26-7.27 (m, 4H), 7.17-7.23 (m, 3H), 7.06-7.14 (m, 5H), 6.78 (d, 1H, \(J=7.3\)), 6.74 (dd, 1H, \(J=1.9, 8.2\)), 6.67 (s, 1H), 6.42 (d, 1H, \(J=8.2\)), 6.22 (d, 1H, \(J=3.1\)), 5.18 (d, 1H, \(J=7.9\)), 4.99 (s, 1H), 4.22 (m, 2H), 3.64-3.90 (m, 4H), 1.89 (s, 3H); \(^{13}\)C NMR (100 MHz, CDCl$_3$) \(\delta\) 200.1, 175.5, 171.1, 158.5, 139.4, 137.9, 136.0, 135.5, 135.3, 134.6, 129.5, 128.7, 128.6, 128.3, 128.0, 127.9, 127.6, 125.5, 111.7, 85.1, 77.2, 76.2, 75.4, 69.3, 61.3, 61.28, 60.9, 58.9, 55.9, 29.2; HRMS(ES$^+$) calcd for C$_{36}$H$_{32}$IN$_2$O$_6$ (M+H)$^+$ 715.1305, found 715.1307.
839, 814, 740, 700; \(^1 \)H NMR (500 MHz, CDCl\(_3\)) \(\delta \) 7.55 (1H, s), 7.37 (1H, dd, J=1.5, 8.1), 7.15-7.25 (10H, m), 7.07-7.12 (4H, m), 6.70 (2H, d, J=8.4), 6.33 (1H, d, J=8.1), 6.21 (1H, d, J=3.3), 5.32 (1H, d, J=6.2), 4.86 (1H, s), 4.27 (1H, d, J=3.3), 4.24 (1H, d, J=6.2), 3.99-4.01 (2H, m), 3.90-3.94 (2H, m), 3.61 (3H, s), 2.75 (3H, s); \(^{13} \)C NMR (100 MHz, CDCl\(_3\)) \(\delta \) 178.0, 172.5, 168.5, 158.8, 140.2, 137.4, 136.1, 135.9, 135.4, 128.9, 128.5, 128.3, 127.9, 127.7, 125.5, 125.3, 114.2, 111.2, 83.9, 75.8, 75.6, 69.1, 61.4, 61.3, 61.2, 58.3, 57.8, 52.4, 32.7; HRMS(ES\(^+\)) calcd for C\(_{37}\)H\(_{35}\)IN\(_3\)O\(_7\) (M+H\(^+\)) 760.1520, found 760.1517.

3R,2'R,3'R,6'S,7'S,9'R)-Spiro[(5-iodoindol-2-one)-3,8'-(9'-
(3-(2-hydroxyethoxy)phenyl)-7'-allyloxycarbonyl-5'-oxo-
2',3'-diphenyl-1'-aza-4'-oxa-bicyclo[4.3.0]nonane)
(III-
214)].\(^{[4]} \) [a]29D +3.5° (c 1.01, CH\(_3\)OH); R\(f \) = 0.25 (75% ethyl acetate-hexanes); FTIR (neat, cm\(^{-1}\)) 3330 (br), 2926, 1731, 1613, 1511, 1472, 1454, 1306, 1249, 1186, 1127, 1084, 1056, 984, 917, 814, 699; \(^1 \)H NMR (500 MHz, CD\(_3\)CN) \(\delta \) 7.45 (d, J = 2.0 Hz, 1H), 7.42 (dd, J = 8.3, 2.0 Hz, 1H), 7.18-7.26 (m, 6H), 7.04-7.11 (m, 6H), 6.70 (d, J = 8.3 Hz, 2H), 6.47 (d, J = 8.3 Hz, 1H), 6.30 (d, J = 3.4 Hz, 1H), 5.34 (tdd, J = 17.1, 10.3, 5.9 Hz, 1H), 4.99-5.06 (m, 4H), 4.22 (dd, J = 13.2, 5.9 Hz, 1H), 4.19 (dd, J = 13.2, 5.9 Hz, 1H), 4.14 (d, J = 3.4 Hz, 1H), 4.04 (d, J = 8.3 Hz, 1H), 3.88 (t, J = 4.6 Hz, 2H), 3.72 (t, J = 4.6 Hz, 2H); \(^{13} \)C NMR (101 MHz, CD\(_3\)CN): \(\delta \) 55.2, 57.9, 60.6, 61.2, 61.9, 66.8, 70.4, 74.9, 77.6, 84.0, 112.7, 115.0, 119.3, 126.5, 126.8, 128.6, 128.8, 129.2, 129.3, 129.4, 129.8, 130.2, 132.1, 135.9, 137.3, 138.6, 142.5, 160.1, 168.9, 171.7, 175.9; HRMS(ES\(^+\)) calcd for C\(_{38}\)H\(_{34}\)IN\(_2\)O\(_7\) (M+H\(^+\)) 757.1411, found 757.1415.

Synthesis of Library IV

General procedure for the sublibrary I-II coupling. To a solution of sublibrary I (ca. 3.0 equiv) and II in methylene chloride (0.04 M) was added 4-(dimethylamino)pyridine (DMAP, 2.5 equiv) followed by (benzotriazol-1-ylxylo)tripyrrolidinophosphonium hexafluorophosphate (PyBOP, 2.5 equiv). After agitated at room temperature for 16 h, the solution was filtered off and the beads were washed with
methylenec chloride (5×) and dried. For analytical purposes, a portion of the polystyrene-bound IV obtained above (5 beads per compound) was treated for 2 h with a solution of hydrogen fluoride-pyridine/pyridine/tetrahydrofuran (0.01 mL/bead) (5%-5% v-v/v), or, for IV-211121, hydrogen fluoride-pyridine/triethylamine/tetrahydrofuran (0.01 mL/bead) (5%-30% v-v/v), and quenched with ethoxytrimethylsilane (0.02 mL/bead). The polystyrene beads were filtered off and washed with methanol/methylene chloride (1:1, 3×) and methylene chloride (3×). The filtrate was collected, concentrated and purified by silica gel column chromatography (triethylamine deactivated silica gel, 1→5% methanol in methylene chloride gradient with constant 1% triethylamine in the solvent) to give the pure alkaloid-diketopiperazine hybrids for analytical purposes, except IV-132132, which was purified on analytical HPLC with multiple injections (Agilent 1100 series with photodiode array detector and fraction collector, Merck KGaA Chromolith Performance RP-18e (4.6 x 100 mm), 3.0 mL/min, 5 min 5→95% CH₃CN in H₂O gradient, 220 nm for fraction collection). For IV-211121, so far it could not be purified without decomposition.

\[(1R,4R,5S,6R)-3-[2-(4-bromophenyl)-1-azenyl]-2,2,4-trimethyl-3-azabicyclo[3.3.1]non-6-yl}-methyl(6S,8S,9R)-9-(3-fluoro-4-hydroxyphenyl)-2,5-dioxo-1,4-diazabicyclo[4.3.0]nonan-8-carboxylate (IV-211121). R_f = 0.25 (10% methanol-methylene chloride); FTIR (neat, cm⁻¹) 3249 (br), 2923, 2851, 1735, 1677, 1521, 1444, 1396, 1297, 1239, 1190, 1114, 1068, 1021, 1004, 830; ¹H NMR (500 MHz, CD₃OD) δ 7.43 (d, J = 8.8 Hz, 2H), 7.24 (d, J = 8.8 Hz, 2H), 6.85-6.79 (m, 2H), 6.73 (dd, J = 8.5, 2.0 Hz, 1H), 5.26 (d, J = 9.0 Hz, 1H), 4.52 (ddd, J = 13.0, 6.5, 1.5 Hz, 1H), 4.12 (dd, J = 17.5, 1.5 Hz, 1H), 4.04 (qd, J = 6.0, 5.8 Hz, 1H), 3.97 (dd, J = 10.2, 8.8 Hz, 1H), 3.93 (dd, J = 10.8, 5.8 Hz, 1H), 3.70 (d, J = 16.5 Hz, 1H), 3.64 (ddd, J = 14.0, 9.8, 6.5 Hz, 1H), 2.58 (q, J = 13.5 Hz, 1H), 2.40 (dt, J = 13.0, 6.5 Hz, 1H), 2.26-2.17 (m, 3H), 1.92-1.88 (m, 1H), 1.70 (s, 3H), 1.69-1.67 (m, 1H), 1.61-1.53 (m, 3H), 1.44 (d, J = 6.5 Hz, 3H), 1.44-1.41 (m, 1H), 1.37 (s, 3H); HRMS(ES⁺) calcd for C₃₂H₃₈BrF₃N₅O₅ (M+H)⁺ 670.2040, found 670.2042.\
\{(1R,4S,5R,6S)-3-[2-(4-nitrophenyl)-1-azeny]-2,2-
dimethyl-4-(3,4,5-trimethoxybenzyl)-3-
azabicyclo[3.3.1]non-6-yl\}-methyl \ (6S,8S,9R)-9-(3-(2-
hydroxyethoxy)phenyl)-3-(2-methylpropyl)-2,5-dioxo-
1,4-diazabicyclo[4.3.0]nonan-8-carboxylate (IV-132132).

\[\alpha\]^{29}_D +57° (c 0.0070, CH₃OH); \ R_f = 0.32 (10% methanol-
methylene chloride); FTIR (neat, cm⁻¹) 3357 (br), 2923,
1732, 1588, 1506, 1455, 1428, 1384, 1367, 1311,
1258, 1238, 1157, 1125, 1106, 1022, 857; \ ¹H NMR (500
MHz, CD₃OD) \ δ 8.14 (d, \ J = 9.5 Hz, 2H), 7.27 (d, \ J = 9.0
Hz, 2H), 7.08 (t, \ J = 8.0 Hz, 1H), 6.72-6.70 (m, 1H), 6.66-6.65 (m, 2H), 6.45 (s, 2H), 5.29 (d, \ J = 9.0
Hz, 1H), 4.60 (m, 2H), 4.24 (dd, \ J = 10.0, 7.0 Hz, 1H), 4.00 (dd, \ J = 10.2, 8.2 Hz, 1H), 3.96 (dd, \ J = 14.2, 9.8 Hz, 1H), 3.90 (t, \ J = 4.8 Hz, 2H), 3.85-3.77 (m, 4H), 3.65 (s, 3H), 3.65 (ddd, \ J = 12.8, 9.2, 6.0
Hz, 1H), 3.62 (s, 6H), 2.82 (dd, \ J = 9.2, 4.2 Hz, 1H), 2.59 (q, \ J = 12.7 Hz, 1H), 2.54-2.49 (m, 1H), 2.40
(dt, \ J = 13.0, 6.5 Hz, 1H), 2.17-2.14 (m, 1H), 2.10-2.04 (m, 1H), 1.92-1.84 (m, 1H), 1.79-1.72 (m, 4H),
1.61 (s, 3H), 1.60 (s, 3H), 1.59-1.50 (m, 1H), 1.37-1.31 (m, 3H), 0.99 (dd, \ J = 6.0 Hz, 3H), 0.95 (dd, \ J =
6.0 Hz, 3H); HRMS(ES⁺) calcd for C₄₇H₆₁N₆O₁₁ (M+H)⁺ 885.4398, found 885.4406.

\{(1S,4S,5R,6S)-2,2,3-trimethyl-4-(2-methylpropyl)-3-
azabicyclo[3.3.1]non-6-yl\}-methyl \ (3R,5R,6S,9R)-6-(4-hydroxyphenyl)-
2,8-dioxo-1,7-diazatricyclo[7.3.0.0³⁷]dodecan-5-carboxylate (IV-123214).

\[\alpha\]^{30}_D +33° (c = 0.016, CH₃OH); \ R_f = 0.33 (10% methanol-methylene chloride); FTIR (neat, cm⁻¹) 3417 (br), 2924,
1732, 1667, 1614, 1516, 1455, 1435, 1417, 1394, 1367, 1261, 1238, 1173, 1105, 1021, 844, 806; \ ¹H NMR
(500 MHz, CD₃OD) \ δ 6.84 (d, \ J = 8.5 Hz, 2H), 6.66 (d, \ J = 8.5 Hz, 2H), 5.24
(d, \ J = 8.5 Hz, 1H), 4.60 (dd, \ J = 10.5, 6.5 Hz, 1H), 4.38 (t, \ J = 7.0 Hz, 1H),
3.98 (dd, \ J = 10.5, 5.5 Hz, 1H), 3.67-3.56 (m, 5H), 2.64 (q, \ J = 12.2 Hz, 1H), 2.33 (dt, \ J = 13.0, 8.2 Hz,
1H), 2.24 (m, 1H), 2.19-2.07 (m, 8H), 2.01-1.94 (m, 3H), 1.64-1.54 (m, 1H), 1.54-1.28 (m, 6H), 1.22
(s, 3H), 1.06 (s, 3H), 0.88 (d, \ J = 7.0 Hz, 3H), 0.86 (d, \ J = 6.5 Hz, 3H); HRMS(ES⁺) calcd for
C₃₃H₄₈N₃O₅ (M+H)⁺ 566.3594, found 566.3590.
{(1R,12R,13S,14R)-2,2-dimethyl-6,7,8-trimethoxy-benzo[e]-3-azatricyclo[7.3.1.0\(^5,10\)]tridec-14-yl}methyl (3S,6R,8R,9S)-3-benzyl-9-(4-hydroxyphenyl)-2,5-dioxo-1,4-diazabicyclo[4.3.0]nonan-8-carboxylate (IV-234213). \([\alpha]_{D}^{28} -23^\circ (c 0.021, \text{CH}_3\text{OH}); R_f = 0.32 (10\% \text{ methanol-methylene chloride}); \) FTIR (neat, cm\(^{-1}\)) 3382 (br), 2923, 1732, 1668, 1614, 1516, 1495, 1462, 1416, 1386, 1337, 1294, 1240, 1174, 1109, 1034, 942, 844; \(^1\)H NMR (500 MHz, CD\(_3\)OD) \(\delta \) 7.37- 7.31 (m, 3H), 7.24 (d, \(J = 6.5 \) Hz, 2H), 6.90 (d, \(J = 9.0 \) Hz, 2H), 6.65 (d, \(J = 9.0 \) Hz, 2H), 6.38 (s, 1H), 5.18 (d, \(J = 9.5 \) Hz, 1H), 4.11 (t, \(J = 5.8 \) Hz, 1H), 3.98-3.94 (m, 2H), 3.81 (s, 3H), 3.76(4) (s, 3H), 3.76(2) (s, 3H), 3.63-3.57 (m, 2H), 3.28 (m, 2H), 3.20 (dd, \(J = 13.5, 6.0 \) Hz, 1H), 3.09 (dd, \(J = 12.2, 5.8 \) Hz, 1H), 3.00 (dd, \(J = 13.5 \) Hz, 5.0 Hz, 1H), 2.58-2.50 (m, 2H), 2.36 (q, \(J = 12.7 \) Hz, 1H), 2.21-2.16 (m, 2H), 2.12 (dt, \(J = 12.5, 6.2 \) Hz, 1H), 2.12-2.08 (m, 1H), 2.04-2.00 (m, 1H), 1.78-1.74 (m, 1H), 1.64-1.57 (m, 3H), 1.52-1.47 (m, 1H), 1.33 (s, 3H), 1.18 (s, 3H); HRMS(ES\(^+\)) calcd for C\(_{43}\)H\(_{52}\)N\(_3\)O\(_8\) (M+H\(^+\)) 738.3754, found 738.3758.

Synthesis of Library V

![Diagram](image)

General procedure for the sublibrary II-III coupling. The polystyrene-bound sublibrary III above was treated with a solution of hydrogen fluoride-pyridine/pyridine/tetrahydrofuran (0.01 mL/bead) (5%-5% v-v/v) for 2 h followed by quenched with ethoxytrimethylsilane (0.02 mL/bead). The polystyrene beads were filtered off and washed with methylene chloride (3×). The filtrate was collected and concentrated to give free spirooxindole III. To a solution of sublibrary III (3.0 equiv) and II in methylene chloride (0.03-0.1 M) was added 4-(dimethylamino)pyridine (DMAP, 2.5 equiv) followed by (benzotriazol-1-ylxy)tritylroloidinophosphonium hexafluorophosphate (PyBOP, 2.5 equiv). After agitated at room temperature for 16 h, the solution was filtered off and the beads were washed with methylene chloride (5×) and dried. A portion of the polystyrene-bound V obtained above
(5 beads per compound) was treated with a solution of hydrogen fluoride-pyridine/pyridine/tetrahydrofuran (0.01 mL/bead) (5%-5% v-v/v) for 2 h followed by quenched with ethoxytrimethylsilane (0.02 mL/bead). The polystyrene beads were filtered off and washed with methanol/methylene chloride (1:1, 3×), methylene chloride (3×) and dried. The filtrate was collected, concentrated and purified by silica gel column chromatography (triethylamine deactivated silica gel, 1→5% methanol in methylene chloride gradient (1→10% for V-121121) with constant 1% triethylamine in the solvent) to give the pure spirooxindole-diketopiperazine hybrid for analytical purposes.

\[
(6S,8S,9R)-2-\{(2'S,3'S,6'R,7'S,9'S)-3-[Spiro(5-iodoindol-2-one)-3,8'-(7'-acetyl-5'-oxo-2',3'-diphenyl-1'-aza-4'-oxa-bicyclo[4.3.0]non-9'-yl)]phenoxy\}ethyl\ 9-(4-hydroxyphenyl)-2,5-dioxo-1,4-diazabicyclo[4.3.0]nonan-8-carboxylate (V-121121). \]

\[
[a]^{29}_{D} +71^\circ \ (c \ 0.011, \ CH_3OH); \ R_f = 0.17 (10% methanol-methylene chloride); \text{FTIR (neat, cm}^{-1}) \ 3418 (\text{br}), 2918, 2850, 1738, 1732, 1715, 1682, 1668, 1614, 1520, 1471, 1455, 1359, 1301, 1259, 1187, 1159, 1114, 944, 806, 699; \text{^1H NMR (500 MHz, CD}_3OD) \delta 7.43 (d, J =1.0 Hz, 1H), 7.40 (dd, J = 7.8, 2.2 Hz, 1H), 7.26 (t, J = 3.2 Hz, 3H), 7.22-7.17 (m, 4H), 7.11-7.08 (m, 5H), 6.81-6.79 (m, 1H), 6.74-6.71 (m, 4H), 6.62 (m, 1H), 6.40 (d, J = 3.5 Hz, 1H), 5.26 (d, J = 9.0 Hz, 1H), 5.22 (d, J = 8.5 Hz, 1H), 5.14 (s, 1H), 4.52 (dd, J = 11.0, 6.0 Hz, 1H), 4.33 (d, J = 8.0 Hz, 1H), 4.21 (d, J = 3.0 Hz, 1H), 4.13 (dd, J = 17.0, 1.0 Hz, 1H), 4.07-4.04 (m, 1H), 3.81-3.77 (m, 1H), 3.71 (d, J = 17.0 Hz, 1H), 3.70-3.62 (m, 3H), 2.53 (q, J = 13.0 Hz, 1H), 2.35 (dt, J = 13.0, 6.5 Hz, 1H), 1.85 (s, 3H); \text{HRMS(ES^+)} \text{ calcd for C}_{50}H_{43}FIN_{4}O_{10} (M+H)^{+} 1005.2008, found 1005.2036.
\]

\[
(3S,6R,8R,9S)-2-\{(3R,2'R,3'R,6'S,7'S,9'R)-4-\[Spiro(5-iodoindol-2-one)-3,8'-(7'-allyloxy carbonyl-5'-oxo-2',3'-diphenyl-1'-aza-4'-oxa-bicyclo[4.3.0]non-9'-yl)]phenoxy\}ethyl\ 9-(3-(2-hydroxyethoxyl)phenyl)-3-(2-methylpropyl)-2,5-dioxo-1,4-diazabicyclo[4.3.0]nonan-8-carboxylate (V-214152). \]

\[
[a]^{28}_{D} -16^\circ \ (c \ 0.035, \ CH_3OH); \ R_f = 0.36 (10% methanol-methylene chloride); \text{FTIR (neat, cm}^{-1}) \ 3389 (\text{br}), 2924, 2854,
1732, 1668, 1614, 1513, 1479, 1304, 1257, 1187, 1103, 1084, 1052, 1010, 980, 805, 699;

1H NMR (500 MHz, CD$_3$OD) δ 7.51 (d, $J = 1.5$ Hz, 1H), 7.47 (dd, $J = 8.2$, 1.5 Hz, 1H), 7.28 (dd, $J = 5.3$, 1.7 Hz, 3H), 7.21-7.09 (m, 10H), 6.82 (t, $J = 8.0$ Hz, 1H), 6.71 (d, $J = 8.5$ Hz, 2H), 6.62-6.58 (m, 2H), 6.45 (d, $J = 8.5$ Hz, 1H), 6.39 (d, $J = 2.5$ Hz, 1H), 5.34 (tdd, $J = 17.0$, 11.0, 5.5 Hz, 1H), 5.27 (d, $J = 9.5$ Hz, 1H), 5.07-5.00 (m, 4H), 4.58 (dd, $J = 11.3$, 6.3 Hz, 1H), 4.25 (dd, $J = 6.0$, 1.0 Hz, 1H), 4.24 (dd, $J = 6.0$, 1.0 Hz, 1H), 4.21 (d, $J = 3.5$ Hz, 1H), 4.15 (d, $J = 7.5$ Hz, 1H), 4.10 (dt, $J = 12.2$, 4.5 Hz, 1H), 4.02 (dt, $J = 12.4$, 4.6 Hz, 1H), 3.91 (t, $J = 4.8$ Hz, 2H), 3.81-3.78 (m, 5H), 3.65 (ddd, $J = 13.8$, 9.3, 6.0 Hz, 1H), 2.55 (q, $J = 12.8$ Hz, 1H), 2.35 (dt, $J = 13.0$, 6.5 Hz, 1H), 1.80-1.71 (m, 2H), 1.61-1.54 (m, 1H), 0.99 (d, $J = 6.0$ Hz, 3H), 0.95 (d, $J = 6.5$ Hz, 3H); HRMS(ES$^+$) calc'd for C$_{58}$H$_{58}$In$_4$O$_{12}$ (M+H)$^+$ 1129.3096, found 1129.3115.

(3S,6R,8R,9S)-2-{(3R,2'R,3'R,6'S,7'S,9'R)-3-[Spiro[(5-iodoindol-2-one)-3,8'-cyano-5'-oxo-2',3'-diphenyl-1'-aza-4'-oxa-bicyclo[4.3.0]non-9'-yl][phenoxy]ethyl 3-benzyl-9-(4'-hydroxyphenyl)-2,5-dioxo-1,4-diazabicyclo[4.3.0]nonan-8-carboxylate (V-222213). $[^{29}\alpha]_D +31^\circ$ (c 0.026, CH$_3$OH); $R_f = 0.29$ (10% methanol-methylene chloride); FTIR (neat, cm$^{-1}$) 3242 (br), 1917, 1732, 1715, 1682, 1668, 1614, 1516, 1471, 1455, 1383, 1294, 1268, 1175, 1108, 1054, 885, 736, 701; 1H NMR (500 MHz, CD$_3$OD) δ 7.72 (s, 1H), 7.45 (d, $J = 7.5$ Hz, 1H), 7.37-7.32 (m, 4H), 7.30-7.20 (m, 9H), 7.08 (dd, $J = 12.0$, 3.0 Hz, 2H), 7.04 (d, $J = 7.5$ Hz, 1H), 6.92 (d, $J = 7.5$ Hz, 2H), 6.75 (d, $J = 7.5$ Hz, 2H), 6.74 (d, $J = 7.5$ Hz, 1H), 6.71 (s, 1H), 6.68-6.65 (m, 1H), 6.40 (d, $J = 8.0$ Hz, 2H), 6.38 (d, $J = 3.0$ Hz, 1H), 5.24 (d, $J = 10.0$ Hz, 1H), 5.18 (s, 1H), 5.17 (d, $J = 10.5$ Hz, 1H), 4.61 (d, $J = 10.0$ Hz, 1H), 4.15-4.12 (m, 2H), 3.90 (m, 2H), 3.61 (m, 2H), 3.27 (ddd, $J = 12.5$, 10.0, 6.0 Hz, 1H), 3.21 (dd, $J = 14.0$, 6.0 Hz, 1H), 3.10 (dd, $J = 12.0$, 6.0 Hz, 1H), 3.01 (dd, $J = 14.0$, 4.5 Hz, 1H), 2.29 (q, $J = 12.7$ Hz, 1H), 2.06 (dt, $J = 13.5$, 6.0 Hz, 1H); HRMS(ES$^+$) calc'd for C$_{58}$H$_{58}$In$_4$O$_{12}$ (M+H)$^+$ 1060.2418, found 1060.2426.

(3S,6R,8R,9S)-2-{(3R,2'R,3'R,6'S,7'S,9'R)-3-[Spiro[(5-iodoindol-2-one)-3,8'-cyano-5'-oxo-2',3'-diphenyl-1'-aza-4'-oxa-bicyclo[4.3.0]non-9'-yl][phenoxy]ethyl 3-benzyl-9-(4'-hydroxyphenyl)-2,5-dioxo-1,4-diazabicyclo[4.3.0]nonan-8-carboxylate (V-222213). $[^{29}\alpha]_D +31^\circ$ (c 0.026, CH$_3$OH); $R_f = 0.29$ (10% methanol-methylene chloride); FTIR (neat, cm$^{-1}$) 3242 (br), 1917, 1732, 1715, 1682, 1668, 1614, 1516, 1471, 1455, 1383, 1294, 1268, 1175, 1108, 1054, 885, 736, 701; 1H NMR (500 MHz, CD$_3$OD) δ 7.72 (s, 1H), 7.45 (d, $J = 7.5$ Hz, 1H), 7.37-7.32 (m, 4H), 7.30-7.20 (m, 9H), 7.08 (dd, $J = 12.0$, 3.0 Hz, 2H), 7.04 (d, $J = 7.5$ Hz, 1H), 6.92 (d, $J = 7.5$ Hz, 2H), 6.75 (d, $J = 7.5$ Hz, 2H), 6.74 (d, $J = 7.5$ Hz, 1H), 6.71 (s, 1H), 6.68-6.65 (m, 1H), 6.40 (d, $J = 8.0$ Hz, 2H), 6.38 (d, $J = 3.0$ Hz, 1H), 5.24 (d, $J = 10.0$ Hz, 1H), 5.18 (s, 1H), 5.17 (d, $J = 10.5$ Hz, 1H), 4.61 (d, $J = 10.0$ Hz, 1H), 4.15-4.12 (m, 2H), 3.90 (m, 2H), 3.61 (m, 2H), 3.27 (ddd, $J = 12.5$, 10.0, 6.0 Hz, 1H), 3.21 (dd, $J = 14.0$, 6.0 Hz, 1H), 3.10 (dd, $J = 12.0$, 6.0 Hz, 1H), 3.01 (dd, $J = 14.0$, 4.5 Hz, 1H), 2.29 (q, $J = 12.7$ Hz, 1H), 2.06 (dt, $J = 13.5$, 6.0 Hz, 1H); HRMS(ES$^+$) calc'd for C$_{58}$H$_{58}$In$_4$O$_{12}$ (M+H)$^+$ 1060.2418, found 1060.2426.
(4-hydroxyphenyl)-2,8-dioxo-1,7-diazatricyclo[7.3.0.0^3,7] dodecan-5-carboxylate (IV-213214).

$[\alpha]_{D}^{20} +39^\circ$ (c 0.019, CH$_3$OH); R_f = 0.33 (10% methanol-methylene chloride); FTIR (neat, cm$^{-1}$) 3418 (br), 2924, 1732, 1668, 1652, 1614, 1514, 1471, 1455, 1434, 1392, 1237, 1176, 1108, 1032, 1002, 954, 840, 808, 732, 700; 1H NMR (500 MHz, CD$_3$OD) δ 7.45 (d, J =1.5 Hz, 1H), 7.34 (dd, J = 8.3, 1.3 Hz, 1H), 7.27-7.10 (m, 12H), 6.79 (d, J = 7.0 Hz, 2H), 6.67 (d, J = 8.0 Hz, 2H) 6.49 (d, J= 8.5 Hz, 2H), 6.37 (d, J = 3.5 Hz, 1H), 6.22 (d, J = 3.0 Hz, 1H), 5.22 (d, J = 6.5 Hz, 1H), 5.19 (d, J = 9.0 Hz, 1H), 4.94 (s, 1H), 4.62-4.58(m, 1H), 4.38 (dd, J = 7.5, 6.5 Hz, 1H), 4.32 (d, J = 4.0 Hz, 1H), 4.25 (d, J = 6.5 Hz, 1H), 4.11-4.07 (m, 1H), 4.03-3.97 (m, 2H), 3.93-3.88 (m, 1H), 3.66 (ddd, J = 13.5, 8.5 6.0 Hz, 1H), 3.62 (s, 3H), 3.56 (dd, J = 6.5, 5.0 Hz, 2H), 2.74 (m, 3H), 2.61 (q, J = 12.7 Hz, 1H), 2.32 (dt, J = 13.5, 6.5 Hz, 1H), 2.23 (td, J = 7.4, 4.5 Hz, 1H), 2.00-1.95 (m, 3H); HRMS(ES$^+$) calcd for C$_{54}$H$_{51}$IN$_5$O$_{11}$ (M+H)$^+$ 1072.2630, found 1072.2646.

Reference:

purified

crude

purified

crude