IgE cross-linking critically impairs human monocyte function by blocking phagocytosis

David M. Pyle, BS,a,b Victoria S. Yang, MD,b,c Rebecca S. Gruchalla, MD, PhD,a,b,d J. David Farrar, PhD,a and Michelle A. Gill, MD, PhDa,b,d

Dallas, Tex

Background: IgE cross-linking triggers many cellular processes that drive allergic disease. While the role of IgE in mediating allergic responses is best described on basophils and mast cells, expression of the high-affinity IgE receptor on other innate immune cells, including monocytes, suggests that it may affect the function of these cells in allergic environments.

Objective: To determine the effect of IgE cross-linking on the function of human monocytes.

Methods: Monocytes purified from healthy donor blood samples were cultured for 4 to 96 hours with media alone, a cross-linking anti-IgE antibody or control IgG. Surface CD14 and CD64 expression and secreted cytokine concentrations were determined. Monocyte function was determined by assessing (1) phagocytosis of Escherichia coli or apoptotic HEp2 cells and (2) killing of intracellular E. coli. Select experiments were performed on monocytes obtained from participants with elevated versus normal serum IgE concentrations.

Results: IgE cross-linking on monocytes increased CD14 expression and induced secretion of TNF-α, IL-6, and autoregulatory IL-10. These effects were greatest in individuals with elevated serum IgE concentrations. In contrast, IgE cross-linking reduced CD64 expression and significantly impaired phagocytic function without disrupting the capacity of monocytes to kill bacteria.

Conclusions: IgE cross-linking drives monocyte proinflammatory processes and autoregulatory IL-10 in a serum IgE-dependent manner. In contrast, monocyte phagocytic function is critically impaired by IgE cross-linking. Our findings suggest that IgE cross-linking on monocytes may contribute to allergic disease by both enhancing detrimental inflammatory responses and concomitantly crippling phagocytosis, a primary mechanism used by these cells to resolve inflammation.

(J Allergy Clin Immunol 2013;131:491-500.)

Key words: Monocyte, IgE, FcεRI, IgE cross-linking, allergy, proinflammatory, autoregulatory, phagocytosis, apoptotic debris

Despite the significant health care burden of atopic disease in the United States,1-3 the mechanisms underlying pathogenesis are incompletely understood. IgE plays a critical role in mediating atopic disease: significant correlations between serum IgE concentration and disease have been demonstrated in allergic asthma and atopic dermatitis.4-6 Indeed, serum IgE concentration represents a diagnostic criterion for these conditions.7,8 Therapies that reduce serum IgE concentration, such as omalizumab, result in clinical improvement in patients with severe atopic disease.8,9

IgE exerts its effect on atopic disease via the high-affinity IgE receptor FcεRI.10 On cross-linking of allergen-specific IgE by a multivalent allergen, the receptor is activated, resulting in intracellular signaling and cell-type specific effects.10 Surface FcεRI expression on several immune cells, including basophils and dendritic cells, is increased in individuals with atopic disease and correlates with serum IgE concentration.11,12

FcεRI mediates IgE-dependent pathways in several cell types, and its role is best characterized in basophils and mast cells. In these cells, IgE cross-linking induces release of inflammatory mediators, including histamine, prostaglandins, and cytokines.13,14 FcεRI plays an important role on myeloid dendritic cells and plasmacytoid dendritic cells (pDC) as well.12 IgE cross-linking on these cells induces proinflammatory cytokine secretion.15,16 In pDCs, IgE- and Toll-like receptor 9 (TLR9)-mediated pathways have been shown to oppose one other;12 allergic stimulation via this pathway also interferes with in vitro pDC antiviral responses.17

FcεRI is also expressed on monocytes and is increased in individuals with atopic diseases.11,18,19,20 Present in high numbers at mucosal surfaces and in the skin during both steady-state and inflammatory conditions, such as allergen exposure, monocytes and their progeny are poised to influence allergic responses.10-25 Monocytes play many important roles during inflammatory processes, including regulating immune responses through the release of cytokines26 and resolving inflammation through the phagocytosis of cellular debris.27,28 Expression of specific surface molecules can also reflect functional properties of monocytes. CD14 contributes to TLR4 signaling and is thus important for immune responses to lipopolysaccharide (LPS).29 CD64, the high-affinity IgG receptor, contributes to phagocytosis; its expression reflects monocyte phagocytic function.30,31,32

Despite the expression of FcεRI on monocytes from both atopic and nonatopic individuals11,18,19 and the importance of

From the Departments of aImmunology, bPediatrics, and dInternal Medicine, UT Southwestern Medical Center; and cChildren’s Medical Center.

This study was supported by the William A. Sellars and Joyce M. Sellars Distinguished Chair in Allergy and Immunology; National Institutes of Health (NIH) National Institute of Allergy and Infectious Diseases (NIAID) grant no. R01-AI098077; NIH/NIAID grant no. R01-AI056222; NIH National Research Service Award no. T32-AI005528; and NIH National Institute of General Medical Sciences grant no. T32-GM008014.

Disclosure of potential conflict of interest: D. M. Pyle has received research support from the National Institutes of Health National Research Service Award and the National Institute of General Medical Sciences. R. S. Gruchalla has received research support from the William A. Sellars and Joyce M. Sellars Distinguished Chair in Allergy and Immunology and the National Institutes of Health Inner City Asthma Consortium and is employed by the Food and Drug Association on an as-needed basis. J. D. Farrar and M. A. Gill have received research support from the National Institutes of Health, National Institute of Allergy and Infectious Diseases. V. S. Yang declares that she has no relevant conflicts of interest.

Received for publication October 10, 2012; revised November 21, 2012; accepted for publication November 27, 2012.

Corresponding author: Michelle A. Gill, MD, PhD, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390. E-mail: Michelle.Gill@UTSouthwestern.edu.

0091-6749/$36.00 © 2013 American Academy of Allergy, Asthma & Immunology

http://dx.doi.org/10.1016/j.jaci.2012.11.037
these cells in inflammatory processes, the consequences of FcεRI activation on monocytes remain incompletely characterized. Stimulation of FcεRI has been shown to induce activation of nuclear factor-κB and secretion of TNF-α, IL-6, and monocyte chemoattractant protein-1 in human monocytes.33,34 In addition, FcεRI cross-linking of GM-CSF and IL-4–treated monocytes in vitro has been shown to promote IL-10 secretion and differentiation into macrophages.35

We set out to define the effect of IgE cross-linking on the function of human monocytes and to determine whether serum IgE concentration affects the magnitude of these responses. Monocytes, by virtue of their expression of FcεRI, inflammatory capacity, and prevalence in mucosal tissues, have the potential to significantly influence allergic inflammation. Determining how IgE cross-linking affects monocyte function will lead to a better understanding of the role of this important cell type in allergic processes and may reveal critical pathways that contribute to the pathogenesis of allergic disease.

METHODS

Monocyte purification
Leukocyte-enriched blood samples were obtained from a local blood bank and diluted 1:1 (vol/vol) with PBS (GIBCO; Grand Island, NY; supplemented with 2% heat-inactivated FCS and 2 mmol/L EDTA). For select experiments, blood was drawn from human donors into tubes containing acid citrate dextrose. PBMCs were isolated by centrifugation with Ficoll-Paque (GE Healthcare, Uppsala, Sweden), and monocytes were purified by using the EasySep Negative Selection Human Monocyte Enrichment Kit (Stemcell Technologies, Vancouver, Canada). Purity ranged from 85% to 95%.

Monocyte culture
Isolated monocytes were cultured in complete RPMI 1640 media (GIBCO; supplemented with 10% heat-inactivated FCS, 1% penicillin-streptomycin, 1% sodium pyruvate, 1% glutamate, 1% HEPES buffer solution, 1% nonessential amino acids, and 100 mmol/L of β-mercaptoethanol) at a concentration of 1 × 10⁶ monocytes/mL. Rabbit antihuman IgE (αIgE) or rabbit IgG (1 or 10 μg/mL; Bethyl Laboratories, Montgomery, Texas) was added to monocyte cultures as indicated. For select experiments, F(ab)₂ fragments derived from αIgE and rabbit IgG antibodies (GenScript, Piscataway, NJ) were added at 10 μg/mL. For cytokine neutralization experiments, mouse antihuman IL-10 receptor (IL-10R), IL-6 receptor (IL-6R), TNF receptor I (TNFRI), or IgG1 or IgG2b isotype controls (R&D Systems, Minneapolis, Minn) were added to monocyte cultures at 10 colony forming units (CFUs)/mL. For select experiments, IL-10 receptor (IL-10R) was blocked with mouse antihuman IL-10R antibody (BioXCell, Berkeley, Calif). Cells were incubated with 5 mmol/L sodium pyruvate, 1% glutamate, 1% HEPES buffer solution, 1% nonessential amino acids, 10% heat-inactivated FCS, 1% penicillin-streptomycin, and 1% L-glutamine (Sigma). Cells were harvested at 16 hours. Monocytes were washed extensively, counted, and lysed in sterile deoxyribonuclease (DNase) (GIBCO; supplemented as above). Cells were incubated with 5 mmol/L (anti-TNF-α, IgG1) or 5 μg/mL (others). Time points reflect distinct cultures for indicated times, with no removal or replacement of media or antibodies.

Flow cytometry
The following fluorochrome-conjugated antihuman antibodies were used: CD14-V450, CD64-FITC, CD64-PE, and FcεRI-PE (BD Biosciences, San Diego, Calif). Cells were rinsed with PBS and stored in Streck Cell Preservation (Streck, Omaha, Neb) at 4°C prior to staining. Preserved samples were washed, resuspended in 100 μL of PBS, and incubated with 2.5 μL of each antibody for 30 minutes at 4°C. Cells were then washed and resuspended in 1% paraformaldehyde. Samples were subsequently acquired on a BD LSR II flow cytometer (BD Biosciences) and analyzed with FlowJo software (Tree Star, Ashland, Ore). Mean fluorescence intensity for CD14⁺ cells was determined and subsequently converted to mean equivalent standard fluorescence by using Ultra Rainbow Calibration Particles (Spherotech, Lake Forest, Ill) and FlowJo.

Cytokine analysis
Supernatants were harvested and stored at −80°C until use. Concentrations of TNF-α and IL-10 in monocyte culture supernatants were measured by ELISA using Legend Max Human ELISA kits (BioLegend, San Diego, Calif). IL-6 concentration was determined by using READY-SET-GO! Human IL-6 ELISA Kit (eBioscience, San Diego, Calif).

Phagocytosis assays
BODIPY FL–conjugated Escherichia coli BioParticles (Molecular Probes, Eugene, Ore) were opsonized with E coli Opsonizing Reagent (Molecular Probes) according to manufacturer instructions, added to monocyte cultures at 10 bacteria/monocyte, and incubated at 37°C for 2 hours. For microscopy, monocytes were washed and mounted onto slides with a Cytospin 4 Centrifuge (Thermo Scientific, Waltham, Mass). Slides were fixed with methanol and coverslipped with Vectashield Mounting Medium with DAPI (Vector Laboratories, Burlingame, Calif). Images were acquired on a DeltaVision Deconvolution Microscope (Applied Precision, Issaquah, Wash) for 50 cells/sample. Internalized particles were counted in ImageJ by using a macro written by D.M. Pyle. For flow cytometry, monocytes were washed, stained for CD14, and acquired on the LSR II flow cytometer.

For selected experiments, HPβ2 cells were grown in complete DMEM media (GIBCO; supplemented as above). Cells were incubated with 5 μmol/L of carboxyfluorescein succinimidyl ester (CFSE) (Molecular Probes) for 10 minutes, washed extensively with media, and incubated for 24 hours with 1 μg/mL of actinomycin D (Sigma, St Louis, Mo) to induce apoptosis. Apoptotic cells were washed, opsonized with 100 μg/mL of whole human IgG (Bethyl Laboratories, Montgomery, Texas), and added to monocyte cultures in a 1:1 ratio. After 4 hours, cells were washed and stained for CD14 for flow cytometry analysis. In some experiments, CD14⁻ monocytes were sorted on a BD FACSaria flow cytometer (BD Biosciences) based on CFSE fluorescence and imaged as above.

Bacterial killing assays
E coli (DH5α strain, a kind gift from J. D. Farrar) were grown in LB media (Sigma) and added to monocyte cultures at 10 colony forming units (CFUs)/monocyte for 45 minutes. Gentamicin (Amresco, Solon, Ohio) was added (100 μg/mL), and monocytes were harvested immediately (0 hours) or after 16 hours. Monocytes were washed extensively, counted, and lysed in sterile deionized water. Lysates were plated on LB agar (Sigma) overnight, and colonies were counted. CFU/Cell was determined for each harvest, and the percentage of bacteria killed was calculated as %Killed = [1 - (CFU/Cell_{0hr} - CFU/Cell_{16hr})/CFU/Cell_{0hr}] × 100. This calculation reflects bacterial killing regardless of the amount of phagocytosis.

Patient recruitment
Individuals with a history of serum IgE concentration of more than 100 U/mL were recruited for select experiments. Individuals with lower IgE concentrations were recruited as controls. All participants had positive skin test to 1 or more indoor allergen. Skin tests were performed,36 and serum IgE levels were determined,17 as previously described. This study was approved by the University of Texas Southwestern institutional review board. Written informed consent and assent were obtained.

Data analysis and statistics
Data are presented as means ± SEM. For all data sets with N > 8, the Grubb test for outliers was applied with α = 0.0001 and outliers were removed from
TABLE I. Participant information

<table>
<thead>
<tr>
<th>Low IgE</th>
<th>High IgE</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Age (y)</td>
<td>23.0 (18-27)</td>
<td>21.2 (14-44)</td>
</tr>
<tr>
<td>Sex</td>
<td>3 Males, 3 females</td>
<td>4 Males, 2 females</td>
</tr>
<tr>
<td>Ethnicity</td>
<td>2 Blacks, 2 whites, 5 Blacks, 1 white</td>
<td>2 Hispanics</td>
</tr>
<tr>
<td>Atopy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asthma</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Allergic rhinitis</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Atopic dermatitis</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Skin test (≥1 positive)</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Skin test (no. of positive)</td>
<td>3.5 (1-7)</td>
<td>5.8 (3-9)</td>
</tr>
<tr>
<td>Serum IgE (U/mL)</td>
<td>50.2 (25-99)</td>
<td>477.0 (134-1017)</td>
</tr>
<tr>
<td>Monocyte FceRI (mean equivalent standard fluorescence)</td>
<td>2951 (1592-4582)</td>
<td>5171 (2011-8065)</td>
</tr>
</tbody>
</table>

Demographic information, atopic status, serum IgE concentration, and monocyte FceRI expression are presented for enrolled participants. P values for categorical values were calculated by chi-square or Fisher exact test. Mean (range) and t test are shown for quantitative values. NA, Not applicable.

RESULTS

The majority of the assays reported hereafter were performed on monocytes from healthy human blood donors. To establish potential clinical effect, we performed certain assays on monocytes obtained from participants with either low (<100 U/mL) or high (≥100 U/mL) serum IgE levels. Participant information is given in Table I. The majority of participants in both groups had a history of asthma and all tested positive for at least 1 environmental allergen by using the skin test. There was no statistically significant difference in age or demographic characteristics between groups. As we have reported previously for pDCs from individuals with elevated IgE levels, the monocyte expression of FceRI was significantly elevated in the high IgE group. Data from these experiments were compared for correlation with serum IgE concentration; these analyses are summarized in Table E1 (in this article’s Online Repository available at www.jacionline.org).

IgE cross-linking alters monocyte surface marker expression

To determine the effect of IgE-mediated stimulation on functionally relevant monocyte surface markers, we analyzed the effect of IgE cross-linking on the surface expression of CD14 and CD64.

IgE cross-linking resulted in significant upregulation of CD14 expression at both time points measured (Fig 1, A). In contrast, surface expression of CD64 was significantly diminished by IgE cross-linking (Fig 1, B). An F(ab)’2 fragment of the IgE cross-linking antibody induced similar upregulation of CD14, indicating that the effects of the whole antibody were not mediated by Fcγ receptors (see Fig E1, A, in this article’s Online Repository at www.jacionline.org).

In addition, CD14 upregulation after IgE cross-linking was greater in individuals with elevated serum IgE level (Fig 1, C) at both time points. Moreover, the expression of CD14 after IgE cross-linking was positively correlated with serum IgE levels (Fig 1, C) at 96 hours.

IgE cross-linking induces secretion of proinflammatory cytokines and autoregulatory IL-10

To determine the temporal patterns and interactions of cytokines induced by IgE cross-linking, we analyzed 3 cytokines commonly secreted by monocytes: TNF-α, IL-6, and IL-10. TNF-α secretion was significantly increased by IgE cross-linking at all time points measured (Fig 2, A, left). Interestingly, the concentration of TNF-α induced by IgE cross-linking was greatest after 4 hours and diminished significantly by 24 hours. This reduction could reflect degradation of TNF-α between 4 and 24 hours. IgE cross-linking induced robust IL-6 secretion at 4 and 24 hours; in contrast to TNF-α, IL-6 levels were maintained at 48 hours (Fig 2, A, middle). The F(ab)’2 fragment of the IgE cross-linking antibody induced similar secretion of IL-6 after 48 hours (see Fig E1, B), confirming that the effects of IgE on monocytes are not mediated by Fcγ.

IgE cross-linking also induced significant IL-10 secretion (Fig 2, A, right). Notably, the greatest IL-10 concentrations were observed after 24 hours of IgE cross-linking and corresponded with lower TNF-α concentrations. To evaluate a potential regulatory role of IL-10 on TNF-α production, we used neutralizing antibodies against both IL-10 and its receptor in the presence of IgE cross-linking. The neutralizing antibodies were chosen such that they did not interfere with cytokine detection by ELISA. IL-10 blockade prevented the reduction in IgE-mediated TNF-α secretion over time (Fig 2, B, left), suggesting an autoregulatory role for IL-10. Interestingly, IL-10 blockade also led to a dramatic increase in IgE-mediated secretion of IL-6, as well as IL-10 itself (Fig 2, B, middle and right). However, the neutralization of TNF-α and IL-6 did not affect IL-10 levels (see Fig E2 in this article’s Online Repository at www.jacionline.org), suggesting that the induction of IL-10 by IgE cross-linking is not mediated by TNF-α or IL-6.

Interestingly, this autoregulatory IL-10 secretion was increased in monocytes from individuals with elevated serum IgE levels (Fig 2, C, left); in fact, IL-10 secretion after IgE cross-linking significantly correlated with serum IgE level (Fig 2, C, right). While the increased autoregulatory IL-10 response in individuals with elevated serum IgE level might predict reduced proinflammatory cytokine secretion, this was not the case. TNF-α secretion on IgE cross-linking was actually increased, and IL-6 secretion was 4-fold higher in participants with elevated IgE (Fig 2, D).

We next examined the effects of IgE concentration on IgE-mediated surface marker expression and cytokine secretion. IgE cross-linking induced concentration-dependent upregulation of CD14, downregulation of CD64, and secretion of IL-6 and IL-10, while TNF-α secretion was similar at both concentrations (see Fig E3 in this article’s Online Repository at www.jacionline.org).
org). Subsequent experiments were performed by using 10 μg/mL, as this concentration of αIgE induced the maximum effect.

IgE cross-linking impairs monocyte phagocytosis

Given the inflammatory nature of IgE-mediated monocyte cytokine secretion, we next explored the effect of IgE cross-linking on a critical monocyte function: phagocytosis.

By using microscopy to quantitate internalized bacteria, we determined that IgE cross-linking significantly impairs monocyte phagocytosis. Monocytes exposed to IgE cross-linking internalized fewer killed, opsonized bacteria compared with monocytes cultured in control conditions (Fig 3, A). The quantitation of internalized bacteria revealed a significant reduction in phagocytosis after IgE cross-linking (Fig 3, B). To extend these findings to multiple time points and assess the role of specific cytokines in phagocytosis, we used a higher throughput flow cytometry assay to similarly measure phagocytosis; this revealed a significant reduction in phagocytosis of small debris (CFSElow monocytes; Fig 4, A). The quantitation of internalized bacteria (Fig 3, C) showed a significant reduction in monocyte phagocytosis at both 48 and 96 hours after IgE cross-linking (Fig 3, D). Interestingly, the impairment of phagocytosis induced by IgE cross-linking was not altered by the neutralization of TNF-α, IL-6, or IL-10 (Fig 3, D; see Fig E4 in this article’s Online Repository at www.jacionline.org), suggesting that this effect of IgE cross-linking is independent of IgE-mediated cytokine secretion and not subject to autoregulation by IL-10.

To assess the extent of the functional impairment resulting from IgE cross-linking, we next investigated whether bacterial killing was altered in monocytes that had already engulfed bacteria. By comparing the number of live, internalized bacteria immediately after phagocytosis and after a 16-hour period, we were able to determine the ability of monocytes to kill internalized bacteria even when different numbers of bacteria were initially engulfed. Confirming our findings with killed, opsonized bacteria (Fig 3, A-C), monocytes exposed to 48 hours of IgE cross-linking internalized fewer live, unopsonized bacteria than did monocytes in control conditions (Fig 3, E, left). Surprisingly, IgE cross-linking did not affect the killing of internalized bacteria after a further 16 hours of incubation (Fig 3, E, right), suggesting that the IgE-mediated functional deficit on monocytes is specific to phagocytosis.

One important function of monocytes and their progeny is the clearing of apoptotic debris after infection or inflammation.27-29 We next determined the effect of IgE cross-linking on phagocytosis of apoptotic cells. After exposure of monocytes to CFSE-labeled apoptotic cells, monocyte CFSE fluorescence was diminished in the IgE cross-linking condition, indicating diminished phagocytosis of apoptotic cells (Fig 4, A). Interestingly, 2 distinct populations of monocytes were observed: CFSElow, which contained small apoptotic debris (Fig 4, B and C), and CFSEhigh, which contained large apoptotic cell remnants (Fig 4, B and D). IgE cross-linking significantly reduced monocyte phagocytosis of small debris (CFSElow monocytes; Fig 4, E) as well as the percentage of monocytes that phagocyted large apoptotic cells (CFSEhigh monocytes; Fig 4, F). In combination, these 2 measures reflect diminished phagocytosis of apoptotic cells by monocytes exposed to IgE cross-linking.

Unlike the proinflammatory effects of IgE cross-linking, the impairment of monocyte phagocytosis was not dependent on serum IgE concentration. Monocytes from participants with
elevated IgE levels showed similar levels of phagocytosis after 48 and 96 hours of IgE cross-linking (Fig 5, A). Moreover, there was no significant correlation between serum IgE level and phagocytosis after IgE cross-linking (Fig 5, B), again suggesting that IgE-mediated inhibition of phagocytosis is independent of the proinflammatory effects of IgE cross-linking.

The effects of IgE cross-linking on monocytes are not mediated by contaminating basophils

Because basophils express high levels of FceRI and secrete immunomodulatory mediators on IgE cross-linking,14 we examined possible basophil contamination by determining the percentages of CD14+ HLA-DR+ FceRI+ cells in each experiment. While most purified monocyte preparations contained less than 1% CD14+ HLA-DR+ FceRI+ cells, some contained more (up to 4.8%). To rule out potential basophil contribution to the above results, we compared the magnitude of IgE-mediated effects to the %CD14+ HLA-DR+ FceRI+ cells in each experiment and no relationships were observed (data not shown).

DISCUSSION

In this report, we demonstrate for the first time that IgE cross-linking impairs the function of human monocytes. Despite the inflammatory phenotype induced by IgE cross-linking, the phagocytic function of these cells is concomitantly crippled (Fig 6). In addition, this study is the first to demonstrate the effect of serum IgE concentration, a biomarker of allergic disease, on the magnitude of IgE-mediated monocyte responses.
IgE-mediated induction of CD14 represents one potential mechanism by which monocytes may contribute to allergic inflammation. Our finding that IgE-mediated CD14 expression correlates with serum IgE concentration may explain the clinical observation that allergen exposure upregulates CD14 on monocytes from sensitized individuals. Because CD14 is essential for LPS responses, one potential consequence of increased CD14 expression is enhancement of this response. This is relevant to allergic disease, considering that individuals with allergic asthma have increased bronchial reactivity to inhaled LPS, which itself contributes to airway inflammation in mouse models of allergic asthma. Our results suggest a potential link between increased CD14 expression and allergic airway disease and a role for IgE in this process.

Another prominent finding in our study was the rapid and robust secretion of the inflammatory cytokines TNF-α and IL-6. Several studies have implicated TNF-α in the pathogenesis of allergic disease, where it has been shown to affect airway inflammation. In addition, IL-6 sputum concentrations correlate inversely with respiratory function in patients with asthma. The results of our study suggest that IgE cross-linking on monocytes could thus contribute to allergic disease via the induction of TNF-α and IL-6 secretion.

The gradual rise in IL-10 secretion was in marked contrast to the kinetics of TNF-α induced by IgE cross-linking. The ability of IL-10 neutralization to reverse the TNF-α decline and dramatically augment secretion of IL-6, and even IL-10 itself, suggests...
that IL-10 acts in an autocrine fashion to limit IgE-mediated cytokine secretion and possibly induce degradation of existing TNF-α. In fact, IL-10 is proposed to play a suppressive role in allergic asthma. Because IL-10 has been shown to suppress T-cell and monocyte/macrophage responses to pathogens, excess IL-10 could potentially disrupt these immune responses.

Given the importance of pathogen-associated exacerbations of allergic diseases, this potential effect of IgE-mediated monocyte IL-10 secretion represents an exciting direction for future studies.

We report for the first time that IgE cross-linking specifically disrupts monocyte phagocytosis without affecting bacterial killing. The apparent discrepancy between IgE-mediated impairment...
of phagocytosis and induction of a proinflammatory program—including TNF-α, a cytokine known to promote phagocytosis—suggests potential activation of divergent pathways by IgE cross-linking. One possible mechanism is impairment of TNF-α responsiveness after IgE cross-linking, as increased TNF-α concentration after IL-10 neutralization did not rescue the IgE-mediated repression of phagocytosis. However, TNF-α unresponsiveness cannot completely account for IgE-mediated effects on monocyte function, as bacterial killing, another TNF-α–responsive process, remained intact. CD64 is also involved in phagocytosis, and its expression is known to reflect monocyte phagocytic ability. The downregulation of CD64 induced by IgE cross-linking represents another potential mechanism contributing to impaired phagocytosis.

Another key regulator of phagocytosis is Src homology 2 domain-containing inositol 5’ phosphatase (SHIP), which inhibits macrophage phagocytosis through its action on membrane phospholipids. Interestingly, SHIP has also been reported to augment TLR-induced proinflammatory cytokine secretion and to mediate formation of reactive oxygen intermediates, which promote killing after phagocytosis. In addition to its roles in macrophages, SHIP is a negative regulator of allergic signaling in basophils; on activation by IgE cross-linking, it limits degranulation. Activation of SHIP by IgE cross-linking in monocytes could potentially explain our observation of impaired phagocytosis despite secretion of proinflammatory cytokines and intact bacterial killing.

The relevance of IgE-mediated disruption of phagocytosis to allergic disease is evidenced by studies demonstrating that alveolar macrophage phagocytosis of bacteria and apoptotic cells is impaired in individuals with severe allergic asthma. Indeed, reduced macrophage phagocytosis has been correlated with increased sputum eosinophils and reduced respiratory function in individuals with allergic asthma. Furthermore, macrophage ingestion of apoptotic granulocytes has been shown to reflect the resolution of asthma symptoms, underscoring the importance of this process in allergic disease. IgE-mediated impairment of monocyte and macrophage phagocytosis in vivo could thus lead to reduced clearance of apoptotic debris and delayed resolution of inflammation.

In summary, we demonstrate that IgE cross-linking drives select functions in human monocytes including the secretion of both proinflammatory and autoregulatory cytokines, which is enhanced in monocytes from individuals with elevated serum IgE levels. In contrast, the ability of monocytes to engulf bacteria or cellular debris is significantly impaired by IgE cross-linking. This suggests that while allergic stimulation of monocytes promotes some aspects of inflammation, it concomitantly impairs the ability of these cells to resolve inflammation via phagocytosis. For individuals with elevated serum IgE concentration, the inflammation induced by allergic stimulation may be more pronounced considering their enhanced secretion of TNF-α and IL-6. Yet, their ability to resolve such inflammation is blocked by IgE-mediated signaling. The ability of IL-10 to modulate IgE-mediated...
proinflammatory cytokine secretion without affecting the impairment of phagocytosis suggests that divergent pathways are induced by IgE cross-linking (Fig 6). Furthermore, the discordant regulation of cytokine secretion and phagocytosis may perpetuate inflammation that occurs during infection in the context of allergic stimulation. Future studies designed to delineate how IgE-mediated signaling leads to these disparate functional effects will further elucidate the consequences of IgE cross-linking on human monocytes and provide a foundation for understanding the role of this important cell type in IgE-mediated allergic disease.

We thank Deborah Gonzales, Dolores Santoyo, Brenda Lewis, and Rebecca Hardy for assistance with the enrollment of the study participants. We thank Angela Mobley and the UT Southwestern Flow Cytometry Facility for assistance with flow-based assays. We also thank Dr Andrew Koh for lending reagents.

Key messages
- IgE cross-linking on monocytes increases the expression of CD14 and the inflammatory cytokines TNF-α and IL-6; these effects are enhanced in individuals with elevated serum IgE concentration.
- IgE cross-linking induces IL-10 secretion in a serum IgE-dependent manner, which acts in an autocrine fashion to limit TNF-α and IL-6 secretion.
- In contrast to the inflammatory phenotype, IgE cross-linking specifically impairs a critical monocyte function—phagocytosis; this effect is not subject to regulation by IL-10.

REFERENCES
11. Sihra BS, Kon OM, Grant JA, Kay AB. Expression of high-affinity IgE receptors (Fc epsilon RI) on peripheral blood basophils, monocytes, and eosinophils in atopic and nonatopic subjects: relationship to total serum IgE concentrations. J Allergy Clin Immunol 1997;99:699-706.

FIG E1. The effects of αIgE are not Fc-mediated. Expression of CD14 (A) and secretion of IL-6 (B) are depicted for monocytes cultured in the following: media alone, αIgE, control IgG, αIgE F(ab)’2 fragment, or IgG F(ab)’2 fragment. Data are expressed as triplicate mean ± SEM for 1 of 4 independent experiments. ***P < .001 for indicated comparisons. MESF, Mean equivalent standard fluorescence.
FIG E2. TNF-α and IL-6 do not regulate secretion of IL-10. Concentration of IL-10 secreted by monocytes cultured for 4 or 48 hours with IgE cross-linking antibody in the presence of neutralizing antibodies for TNF-α and TNFRI (A), IL-6 and IL-6R (B), or appropriate isotype controls (N = 3).
FIG E3. Effects of IgE cross-linking are concentration dependent. A, Expression of CD14 (left) and CD64 (right) is depicted for monocytes cultured for 96 hours in the following: media alone, αIgE (1 or 10 μg/mL), or control IgG (1 or 10 μg/mL). B, Concentration of TNF-α (left), IL-6 (middle), and IL-10 (right) secreted by monocytes cultured as in Fig E3, A, for αIgE (1 or 10 μg/mL) vs media and IgG (1 or 10 μg/mL, respectively) (Fig E3, B). Data are expressed as triplicate means ± SEM for 1 of 5 independent experiments. MESF, Mean equivalent standard fluorescence.
FIG E4. IgE cross-linking impairs phagocytosis independently of TNF-α and IL-6. Fluorescence of internalized bacteria in monocytes cultured for 48 hours in media alone, IgE cross-linking antibody, or control IgG in the presence of neutralizing antibody for TNF-α and TNFRI (A), IL-6 and IL-6R (B), or appropriate isotype controls (N = 3). NS P > .05 for indicated comparisons. MESF, Mean equivalent standard fluorescence.
TABLE E1. The effect of IgE cross-linking on monocyte phenotype and function correlates with serum IgE

<table>
<thead>
<tr>
<th>Monocytes after IgE cross-linking</th>
<th>Versus log serum IgE</th>
<th>Pearson R</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD14 expression</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48 h</td>
<td>0.55</td>
<td>.061</td>
<td></td>
</tr>
<tr>
<td>96 h</td>
<td>0.69</td>
<td>.019</td>
<td></td>
</tr>
<tr>
<td>Phagocytosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48 h</td>
<td>–0.34</td>
<td>.274</td>
<td></td>
</tr>
<tr>
<td>96 h</td>
<td>–0.18</td>
<td>.588</td>
<td></td>
</tr>
<tr>
<td>TNF-α secretion</td>
<td>0.34</td>
<td>.341</td>
<td></td>
</tr>
<tr>
<td>IL-6 secretion</td>
<td>0.49</td>
<td>.099</td>
<td></td>
</tr>
<tr>
<td>IL-10 secretion</td>
<td>0.72</td>
<td>.007</td>
<td></td>
</tr>
</tbody>
</table>

Correlations (Pearson R and P values) are presented for measurements obtained from monocytes after IgE cross-linking and log of serum IgE concentration.