A unique antibody gene signature is prevalent in the central nervous system of patients with multiple sclerosis

⁎ Corresponding author. Department of Neurology, University of Texas Southwestern Medical Center, Dallas TX 75154, USA. Tel.: +1 214 648 9129.
E-mail address: Nancy.Monson@UTSouthwestern.edu (N.L. Monson).

1 These authors contributed equally to this manuscript.
2 These senior authors contributed equally to this manuscript.

a Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
b Department of Neurology, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA 02115, USA
c Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
d Department of Neurology, The Ohio State University Medical Center, Columbus, OH 43210, USA
e Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
f Department of Neurology, Yale School of Medicine 15 York Street, New Haven CT 06520-8018, USA

Abstract

B cells isolated from the CSF of patients with multiple sclerosis (MS) have a unique accumulation of somatic hypermutation within the B cell receptor, termed the antibody gene signature (AGS). The focus of this study was to investigate whether the AGS could also be detected in MS brain tissue. Genetic analysis of B cells isolated from post-mortem CNS tissue samples from four MS brains demonstrated that signature enriched B cells are present at the site of tissue injury as well as in the circulating CSF.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The involvement of B cells in the pathogenesis of multiple sclerosis (MS) has been reviewed elsewhere (Antel and Bar-Or, 2006; McFarland, 2008; Owens et al., 2006) and is supported by the therapeutic efficacy of the B cell depleting anti-CD20 drug rituximab in patients with MS (Hauser et al., 2008). This finding supports the concept that the B cell pool in MS patients harbors a subset that contributes to disease pathology. We hypothesized that if the cellular pool in MS patients is dysregulated, one would expect that antibody genes utilized by B cells circulating within the cerebrospinal fluid (CSF) would display a pattern of somatic hypermutation not found in healthy donors or patients with other neurological diseases. Indeed, our laboratory has recently identified a novel pattern of somatic hypermutation that is unique to MS CSF B cells and not found in control derived sequences (Cameron et al., 2009). We investigated the utility of this antibody gene signature (AGS) as a molecular genetic tool to identify CIS patients at risk to develop MS that would subsequently convert to definite MS. Application of the AGS tool demonstrated the ability to predict conversion to definite MS with an accuracy of 91% (Cameron et al., 2009). The goal of this current study was to determine whether this MS-specific AGS identified in the CSF is also present in the CNS tissue of patients with MS.

2. Materials and methods

2.1. Specimens

CNS tissue was dissected at autopsy from four subjects with clinically definite MS. Specimens were immediately snap-frozen then stored at –80 °C. Table 1 summarizes the clinical features of each subject. All human subject research was approved from the local human research internal review boards.

2.2. Immunoglobulin variable region cloning

B cell immunoglobulin variable region libraries were assembled from tissue sections prepared on a cryostat. RNA was extracted from tissue sections 14-μm thick using the RNAeasy Mini Kit (Qiagen) according to the manufacturer’s instructions. From the total RNA, cDNA was synthesized and human Ig variable region genes were amplified as described previously (Willis et al., 2009).
keeping with the current conceptualization of MS pathogenesis, which hypothesizes that AGS-enriched B cells are present at the site of the disease. The repertoire database provides important corroboration of our principal finding that the AGS of CD19+ peripheral blood B cells from 3 MS patients was 2.0 (Table 1). These data demonstrate that the CNS tissue antibody repertoire ranged from 10.0 to 14.5 (average AGS scores of CSF B cells from patients with MS ranged from 7.6 to 11.9) (Table 1). These data demonstrate that the AGS prevalence of B cells in CSF and CNS tissue of MS patients supports the hypothesis that a restricted population of B cells is involved in the biological underpinning of the disease process in MS. Further characterization of these AGS enriched B cells in MS is currently under active investigation.

Acknowledgments

This study was supported by grants from the National Multiple Sclerosis Society to NLM (RG3267) and DAH (RG2172 and RG3308), and the National Institute of Health to RNS (HO1A140041) and DAH (UO1DK612901, R01NS024247, P01AI39671, and PO1NS33037). I.L. was supported by a training research fellowship FISM – Fondazione Italiana Sclerosi Multipla – Cod. 2008/B/3. S.N.W. is supported by a C.J. Martin Postdoctoral Fellowship from the National Health and Medical Research Council of Australia. K.C.O. was supported by a Career Transition Fellowship from the National Multiple Sclerosis Society. The authors have no conflicting financial interests.

The authors thank the patients and their families who consented to donating post-mortem samples for this study.

References

Table 1
Clinical and demographic data of patient specimens.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Age and gender</th>
<th>Disease duration (years)</th>
<th>MS course</th>
<th>AGS score1</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-1</td>
<td>38/F</td>
<td>NA</td>
<td>RRMS</td>
<td>10.0</td>
</tr>
<tr>
<td>MS-2</td>
<td>65/M</td>
<td>NA</td>
<td>CPMS2</td>
<td>14.5</td>
</tr>
<tr>
<td>MS-3</td>
<td>43/F</td>
<td>20</td>
<td>CPMS3</td>
<td>11.9</td>
</tr>
<tr>
<td>MS-4</td>
<td>39/F</td>
<td>13</td>
<td>CPMS3</td>
<td>11.0</td>
</tr>
<tr>
<td>CSF-MS3</td>
<td>58/2F:1 M</td>
<td>NR</td>
<td>CSF-MS3</td>
<td>4.5</td>
</tr>
<tr>
<td>PR-MS2</td>
<td>41/F</td>
<td><1</td>
<td>PR-MS2</td>
<td>2.0</td>
</tr>
</tbody>
</table>

1AGS score analysis from (Cameron et al., 2009). Scores represent averages of each cohort.
2CD19+ CSF B cells were collected from 3 RRMS patients as published in (Cameron et al., 2009).
3CD19+ peripheral B cells were collected from 3 RRMS patients as published in (Cameron et al., 2009).
4Pathology reports for these patients state “chronic progressive” with no additional history provided to determine whether these patients had primary or secondary progressive MS.

Abbreviations: MS: multiple sclerosis, CSF: cerebrospinal fluid, OND: other neurological disease, PB: peripheral blood, F: female, M: male, NA: not available, RR: not relevant, RRMS: Relapsing-remitting MS, CPMS: Chronic progressive MS.

2.3. Analysis of the B cell repertoire

A database containing 918 heavy chain sequences was compiled from the CNS tissue and analyzed using a Perl based program developed by the Bioinformatics lab in the Pathology Department at The University of Texas Southwestern. The program utilizes the IMGT/V-QUEST tool as a basis for extracting the sequence information (http://imgt.cines.fr) (Lefranc, 2001). Databases containing the gene and mutational information of each of the sequences were created using this program.

2.4. Antibody gene signature

The 71 unique VH4 sequences in the CNS tissue heavy chain sequence database were used to calculate antibody gene signature (AGS) scores as previously described (Cameron et al., 2009). AGS scores were calculated for each individual patient specimen.

3. Results and discussion

The calculated AGS scores derived from the four subjects are listed in Table 1. We had previously established (Cameron et al., 2009) that the AGS scores of CSF B cells from patients with MS ranged from 7.6 to 11.9 (average combined AGS score of 10.9) (Table 1). The AGS scores for the CNS tissue antibody repertoires ranged from 10.0 to 14.5 (average combined AGS score of 11.9) (Table 1). These data demonstrate that the AGS is not unique to the CSF but is also present in CNS tissue of MS patients. Of note, the average AGS score of CD19+ CSF B cells from three patients with other neurological diseases was 4.5 and the average AGS score of CD19+ peripheral blood B cells from 3 MS patients was 2.0 (Cameron et al., 2009).

The presence of a strong AGS score in this CNS tissue antibody gene repertoire database provides important corroboration of our principal hypothesis that AGS enriched B cells are present at the site of the disease process in MS, as well as in the circulating CSF. Our observations are in keeping with the current conceptualization of MS pathogenesis, which includes the matriculation of brain-reactive B cells from the periphery into brain tissue via the circulating CSF (Lassmann et al., 2001, 2007; Meinl et al., 2006; Pittcock and Lucchinetti, 2007; Ransohoff et al., 2003; Serafini et al., 2004; Uccelli et al., 2005). Thus, if high AGS scores are a common feature of CSF B cells from MS patients, it should also represent a common characteristic of B cells localized to CNS tissue, as we have demonstrated here. A limitation in this current study is the low number of patient samples evaluated, however it provides a preliminary look into the localization of the AGS and justifies further research into the area. Ultimately, the AGS prevalence of B cells in CSF and CNS tissue of MS patients supports the hypothesis that a restricted population of B cells is involved in the biological underpinning of the disease process in MS. Further characterization of these AGS enriched B cells in MS is currently under active investigation.