Selectivity of the β-Adrenergic Receptor among G_a, G_β-'s, and G_δ; Assay Using Recombinant α Subunits in Reconstituted Phospholipid Vesicles†

Ronald C. Rubenstein, Maurine E. Linder, and Elliott M. Ross*

Department of Pharmacology and Cell Regulation Graduate Program, Southwestern Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75235-9041

Received May 29, 1991; Revised Manuscript Received August 14, 1991

ABSTRACT: The selective regulation of G_a (long and short forms), G_β-'s (1, 2, and 3), and G_δ by the β-adrenergic receptor was assessed quantitatively after coreconstitution of purified receptor, purified G-protein βγ subunits, and individual recombinant G-protein α subunits that were expressed in and purified from *Escherichia coli*. Receptor and βγ subunits were incorporated into phospholipid vesicles, and the α subunits bound to the vesicles stoichiometrically with respect to βγ. Efficient regulation of α subunit by receptor required the presence of βγ. Regulation of G proteins was measured according to the stimulation of the initial rate of GTPγS binding, steady-state GTPase activity, and equilibrium GDP/GDP exchange. The assays yielded qualitatively similar results. GDP/GDP exchange was a first-order reaction for each subunit. The rate constant increased linearly with the concentration of agonist-liganded receptor, and the dependence of the rate constant on receptor concentration was a reproducible measurement of the efficiency with which receptor regulated each G protein. Reconstituted α_a (long or short form) was stimulated by receptor to approximately the extent described previously for natural G_a. Both α₁₁ and α₁₃ were regulated with 25-33% of that efficiency. Stimulation of α₁₁ and α₁₃ was weak, and stimulation of α₁₂ was barely detectable over its high basal exchange rate. Reduction of the receptor with dithiothreitol increased the exchange rates for all G proteins but did not alter the relative selectivity of the receptor.

GTP-binding regulatory proteins (G proteins) convey information from cell-surface receptors to effector proteins that synthesize or release cytoplasmic second messengers. Selective interactions between receptors and G proteins and between G proteins and effectors are therefore central to reliable signal transduction. Receptors were first thought to be highly selective for individual G proteins. Prototypes for such selectivity are the β-adrenergic and glucagon receptors, which stimulate adenylyl cyclase via G_a. However, it is now apparent that a signal can be routed from one receptor to multiple G proteins or from one G protein to several effectors [see Ross (1989) for a review]. The M1-muscarinic cholinergic receptor can stimulate phospholipase C activity through both pertussis toxin sensitive and pertussis toxin insensitive G proteins (Ashkenazi et al., 1989). Receptors for bradykinin and neuropeptide Y regulate a Ca²⁺ channel through a complex combination of G proteins and several G_i's (Ewald et al., 1989). The β-adrenergic receptor, which usually regulates G_a, can also interact with G_i (Abramson et al., 1985, 1987; Asano et al., 1984) and, perhaps, other G proteins (Barber et al., 1989).

G proteins are heterotrimers. The α subunit is activated by binding GTP and, when activated, regulates the activity of effector proteins. The α subunits are a family of homologous proteins that display strong conservation of amino acid sequence, particularly around the GTP-binding site [see Gilman (1987) and Bourne et al. (1991) for reviews]. A unique α subunit defines each G protein and is assumed to determine selectivity for both receptors and effectors. Receptors promote the activation of G proteins by accelerating the binding of GTP to the α subunit, which is otherwise a slow process. It is thus likely that the receptor-binding domains on α subunits are similar and conserved but that each is adequately distinctive to provide the appropriate level of selectivity among receptors.

It is a major challenge to understand the physiological selectivity of a receptor among a cell's complement of G proteins. A receptor's selectivity can be defined according to its activation of effector proteins: channels, adenylyl cyclase, or phospholipase C. Such definition depends on knowing which G proteins are present in the cell, which can couple to each effector protein, and the efficiency with which the effector is stimulated. More direct assays of a receptor's ability to regulate a specific G protein, such as guanine nucleotide binding or GTPase activity, are not usually feasible in a native membrane because it is difficult or impossible to assign the binding or hydrolytic reaction to any one G protein. Measuring the regulation of purified G proteins by receptors in reconstituted systems provides an alternative test of selectivity (Asano et al., 1984; Cerione et al., 1986; Senogles et al., 1987, 1990). Assays are straightforward and can be both quantitative and reproducible. Selectivity determined in vitro gives information about which G proteins are potential targets of a receptor rather than which G protein conveys a signal in a specific cell. Such information can be combined with information on the cell's spectrum of G proteins and receptors to suggest likely signal transduction pathways.

Purifying individual G proteins to study selectivity in vitro is difficult because these homologous proteins tend to cofractionate. Even if the preparation is "homogeneous" with respect to the G-protein α subunit, the identity of βγ subunits among different preparations cannot be assumed. Recently,
the two forms of α, the three αₛ, and α₆ have been produced in *Escherichia coli* (Graziano et al., 1989; Linder et al., 1990). Preparations of each are not contaminated by other α subunits and can be recombined with a uniform, although heterogeneous, preparations of βγ subunits to form a trimeric G protein (Parker et al., 1991; Kurose et al., 1991). To address the biochemical basis of receptor-G-protein selectivity, we reconstituted the β-adrenergic receptor in phospholipid vesicles with different recombinant α subunits and βγ subunits. This system has allowed us to establish a quantitative assay of receptor-G-protein regulation and determine the receptors' selectivity among the various α subunits.

EXPERIMENTAL PROCEDURES

Materials. (−)-Propranolol, (−)-alpenolol, (+)-cyanopindolol, and Lubrol 12A9 were gifts from Ayerst Laboratories, Hassle Pharmaceuticals, Dr. G. Engel of Sandoz Pharmaceuticals, and ICI, Ltd. GDP and GTP were from Sigma. GTPyS from Boehringer Mannheim was purified as described by Asano et al. (1984). Pertussis toxin was purchased from List Biologicals. [3SS]GTPyS, NalZSI, [32P]NAD, [3H]dihydroalprenolol, and [γ-32P]GTP were from Dupont/NEN. [α-32P]GTP was from Dupont/NEN or Amersham. 1-Palmitoyl-2-oleoylphosphatidylinositol, phosphatidylserine, and phosphatidylethanolamine were from Avanti Polar Lipids. Dimyristoylphosphatidylcholine and phosphatidylglycerol prepared from egg lecithin were from Sigma. The numbers of receptors among vesicles.

Protein Purification. β-Adrenergic receptor was purified from turkey erythrocytes either exactly as described by Brandt and Ross (1986) or using a modification of that protocol in which membranes were prepared according to Cooper et al. (1989) and receptors were solubilized using a mixture of digitonin and deoxycholate (10:1). Soluble receptor was assayed using [3H]dihydroalprenolol (Fleming & Ross, 1980).

Recombinant bovine Gₛ α subunits (long and short forms) were purified from *E. coli* according to the procedure of Graziano et al. (1989). Recombinant α subunits of rat Gₛₛ, Gₛ₁, and Gₛ were purified according to the procedure of Linder et al. (1990). A preparation of a 41-kDa α subunit, presumably αₛ₁, or αₛ₃, was purified from bovine brain according to Mumby et al. (1988) and was a gift from Dr. I.-H. Pang of this department. Bovine αₛ₃ purified according to Sternweis and Robishaw (1984), was a gift from Dr. P. J. Casey, also of this department.

Bovine brain βγ subunits, partially purified by the method of Casey et al. (1989) through heptalamine–Sepharose chromatography, were a gift of Dr. P. J. Casey. To remove contaminating α subunits, βγ-containing fractions were further chromatographed on FPLC Mono Q (Casey et al., 1989) (preparation 1) or on hydroxyapatite (preparation 2). Hydroxyapatite chromatography was performed in 20 mM NaHepes (pH 8.0), 50 mM NaCl, 1% cholate; βγ subunits were eluted with a 0–80 mM linear gradient of KP in the same buffer. The major peak of βγ from either preparation contained less than 1% contaminating α subunit according to the binding of [3H]GTPyS. The βγ subunits were assayed according to their ability to support the ADP-ribosylation of αₛ₃ by pertussis toxin (Casey et al., 1989). The presence of αₛ₃ does not interfere with this determination (not shown).

Reconstitution. β-Adrenergic receptor and G-protein subunits were reconstituted into phospholipid vesicles using modifications of the method of Brandt and Ross (1986). 1-Palmitoyl-2-oleoylphosphatidylinositol and phosphatidylglycerol (2:1, w/w) were dispersed by sonication in a solution of 0.3% deoxycholate and 0.06% cholate in 20 mM NaHepes (pH 8.0), 2 mM MgCl₂, 1 mM EDTA, and 100 mM NaCl at a final total concentration of 1 mg/mL. Receptor and G-protein subunits were added to the lipid dispersion to give a final lipid concentration of 0.5 mg/mL in an initial reconstitution mixture of 50-μL total volume. The mixture was then chromatographed to remove detergent on Ultrogel AcA34 (3 × 150 mm) in 20 mM NaHepes (pH 8.0), 1 mM EDTA, and 100 mM NaCl with either 2 or 3 mM MgCl₂. Ultrogel AcA 34 was used for gel filtration because its larger pore size allows the separation of reconstituted vesicles from unreconstituted proteins, detergent micelles, and small molecules (nucleotides, detergents). Vesicles eluted at the void volume of the column in a total volume of about 250 μL, and unreconstituted proteins eluted later with the detergent. Typically, only 5–10% of the β-adrenergic receptor in the original mixture was recovered in the vesicles. This yield of receptor is considerably lower than that previously reported (Brandt & Ross, 1986) and appears to reflect the change from Sephadex G-50 to Ultrogel AcA34 as the matrix used for removal of detergent. The recovery of G-protein subunits is discussed under Results. Between 15 and 50% (usually ~30%) of reconstituted α subunit was sensitive to regulation by receptor in the vesicles. Less than quantitative coupling has been a constant observation. It probably reflects incorrect orientation of receptor and/or G protein in the vesicles and the distribution of small numbers of receptors among vesicles.

In other experiments (not shown), similar results were obtained using a phospholipid mixture of phosphatidylethanolamine and phosphatidylserine (3:2 w/w). The addition of 10% cholesterol hemisuccinate to either phospholipid mixture was also without significant effect. In some experiments, [α-32P]GTP was bound to α subunits prior to reconstitution by incubation in 50 mM NaHepes (pH 8.0), 1 mM EDTA, 1 mM DTT, and 10 mM MgCl₂ with a 5–10-fold molar excess of [α-32P]GTP (5–200 cpm/fmol). Incubations were 10 min at room temperature for αₛ₃ 30 min at room temperature for αₛ₃ and 90 min at 30 °C for the αₛ₃. Incubations were terminated by chilling to 0 °C and addition of EDTA to 1 mM in excess over total Mg²⁺. The [α-32P]-GDP-ligated α subunits were then reconstituted with receptor and Gₛₛ as described above. The amount of GDP bound to αₛ₃ was determined by diluting an aliquot of vesicles to 50 μL with the reconstitution buffer, adding 100 μL of buffer containing 20 mM NaHepes (pH 8.0), 100 mM NaCl, 0.1% Lubrol 12A9, 1 mM GTP, 0.1% 2-mercaptoethanol, 0.1 mM (−)-propranolol, 30 μM AlCl₃, 10 mM MgCl₂, and 10 NaF at 0 °C, and filtering the sample on Schleicher & Schuell BA85 nitrocellulose filters exactly as described for the assay of GTPyS binding [see below and Asano et al. (1984)]. To confirm the identity of the 32P-labeled nucleotide as GDP, reconstituted vesicles were denatured by incubation in 70% methanol, and an aliquot of the supernatant was subjected to thin-layer chromatography on poly(ethyleneimine)–cellulose in 0.75 M Tris–OH/0.45 M HCl/0.4 M LiCl (Bochner & Ames, 1982). All radioactivity migrated with the GDP standard.

The specific activity of [α-32P]GDP-ligated Gₛ was determined by assays of bound 32P and total GTPyS-binding activity (see below). Comparison of the specific activities of 32P-labeled nucleotide before and after loading the Gₛ's indicated that 60–90% of the total Gₛ was labeled during the loading protocol. Reconstituted, [α-32P]GTPγS-ligated α subunits retained over 90% of their ligand after 2 days at 0 °C.
Assays of Reconstituted Vesicles. Reconstituted receptor was assayed by the binding of the \(\beta \)-adrenergic antagonist [\(^{35}\)S]iodocyanopindolol using filtration on glass fiber filters to remove unbound ligand as previously described (Fleming & Ross, 1980). Because detergent-solubilized receptor flows through these filters, unreconstituted receptor was not detected by this assay.

The total amount of \(\alpha \) subunit was assayed according to the binding of [\(^{35}\)S]GTP\(_{\gamma}\)S in the presence of Lubrol 12A9 and 30 mM MgCl\(_2\) exactly as described by Asano et al. (1984), except that the concentration of GTP\(_{\gamma}\)S in the assay was 2 \(\mu \)M and the incubation at 30 \(^\circ \)C was for 1 h. Experiments using unlabeled GTP\(_{\gamma}\)S confirmed that all of the [\(^{32}\)P]GDP that had been bound to \(G \) was released during this assay.

Receptor-stimulated [\(^{35}\)S]GTP\(_{\gamma}\)S binding (Asano et al., 1984; Brandt & Ross, 1986) and receptor-stimulated GTPase activity (Brandt et al., 1983) were assayed essentially as described previously. The assay buffer contained 20 mM NaHepes (pH 8.0), 1 mM EDTA, 100 mM NaCl, 0.1 mM ascorbate, 200 mM nucleotide, and either 1.1 mM MgCl\(_2\) for \(\alpha_2 \) and \(\alpha_3 \) or 3 mM MgCl\(_2\) for all other \(\alpha \) subunits.

Reconstituted vesicles that contained [\(\alpha_3\)^{32}\]P]GDP-ligated \(\alpha \) subunits were assayed for receptor-stimulated GDP release under conditions similar to those used for the assays of receptor-stimulated GTP\(_{\gamma}\)S binding and GTPase activity, except that the buffer contained 3 mM MgCl\(_2\) and the unlabelled guanine nucleotide shown in the figure legends (usually GDP). GDP release assays were quenched at 0 \(^\circ \)C in the buffer described for the GDP-binding assay. Bound GDP was stable after quenching for at least 3 h. Unless otherwise noted, all assays of receptor-\(\alpha \) subunit interaction were performed at 30 \(^\circ \)C.

To measure initial rates of GDP release at different concentrations of receptor (see Table IV), vesicles that contained [\(^{32}\)P]GDP-ligated G protein and varying concentrations of \(\beta \)-adrenergic receptor were incubated in the presence of 1 \(\mu \)M GDP and either 0.1 \(\mu \)M (-)-isoproterenol (basal) or 10 \(\mu \)M (-)-isoproterenol. Bound [\(\alpha_3\)^{32}\]P]GDP was assayed over 30-60 s, as appropriate to the rates. Data from duplicate four point time courses were fit to a first-order dissociation model (see text, eq 2 and 3):

\[
\ln ([GDP bound]/[GDP bound at t = 0]) = -k_{obs} t
\]

The values of \(k_{obs} \) increased linearly with increasing concentrations of receptor. The slopes of plots of \(k_{obs} \) vs receptor concentration (\(dk_{obs}/d[R] \)) were determined by linear least-squares fits.

Data Analysis. The data shown are generally means of duplicate determinations. First-order rate constants were derived using a weighted nonlinear curve-fitting program (KINETIC, Elsevier-BIOSOFT), and linear regressions were performed using an unweighted least-squares algorithm.

RESULTS

Role of G-Protein \(\beta_\gamma \) Subunits in the Reconstitution of Receptor with Recombinant \(\alpha \) Subunits. G-Protein \(\beta_\gamma \) subunits are required for the association of isolated \(\alpha \) subunits with lipid bilayers (Sternweis et al., 1986). This requirement also holds for recombinant \(\alpha \) subunits expressed in \textit{E. coli}. In the absence of \(\beta_\gamma \), the association of \(\alpha_{long} \) with the vesicles was negligible. Essentially all of the \(\alpha \) was recovered within the included volume of the column, while reconstituted vesicles were found in the void volume (not shown). The total recovery of \(\alpha \) activity was also low, probably because \(\beta_\gamma \) subunits stabilize \(\alpha \) subunits against denaturation (Northup et al., 1983). When \(\beta_\gamma \) subunits were included in the mixture to be

![FIGURE 1: Reconstitution of increasing amounts of \(\alpha \) with a fixed amount of \(\beta_\gamma \) and phospholipid. Increasing amounts of \(\alpha_{long} \) were mixed with \(\beta_\gamma \) subunits (46 pmol of preparation 1) and phospholipid and chromatographed on AcA34. Vesicles in the void volume were pooled, and both \(\alpha \) and \(\beta_\gamma \) subunits were assayed. The recovery of \(\alpha \) in each batch of vesicles is expressed both as the total amount (Q) and as the molar ratio of \(\alpha \) to \(\beta_\gamma \) (●). Error bars show the range of values in two reconstitutions.](image-url)
binding if recombinant \(\alpha_i \) was added to preformed receptor-containing vesicles in the absence of \(\beta\gamma \) (Figure 2B). If soluble \(\alpha \) was added to vesicles that contained both receptor and \(\beta\gamma \) subunits or if soluble \(\alpha \) and Lubrol-solubilized \(\beta\gamma \) were added to preformed vesicles that contained receptor alone (Figure 2C,D), slight stimulation of GTP\(\gamma \)S binding was consistently observed during multiple exploratory experiments. However, the basal rate of GTP\(\gamma \)S binding was much higher than when all three protein components were coreconstituted by gel filtration and accurate quantitation of coupling was not feasible. Free \(\alpha \) subunits are known to display a relatively high nucleotide exchange rate that is suppressed by \(\beta\gamma \) (Northup et al., 1982; Higashijima et al., 1987). As predicted by this explanation, the basal rate of GTP\(\gamma \)S binding to a mixture of free \(\alpha_{\text{long}} \) and receptor/\(\beta\gamma \) vesicles was markedly reduced by chromatography on Ultrogel AcA34 although the agonist-stimulated binding rate was essentially unchanged (not shown).

Regulation of Different \(\alpha \) Subunits by the \(\beta\)-Adrenergic Receptor. To study the selectivity of the \(\beta\)-adrenergic receptors among different G proteins, purified recombinant \(\alpha \) subunits were mixed with \(\beta\gamma \) subunits and \(\beta\)-adrenergic receptor and reconstituted into vesicles as described above. Measurements of agonist-stimulated GTP\(\gamma \)S binding and agonist-stimulated GTPase yielded roughly similar patterns of selectivity. As shown in Figure 3, isoproterenol accelerated GTP\(\gamma \)S binding to both forms of \(\alpha_i \) and to all three \(\alpha_i \)'s. Stimulation of GTP\(\gamma \)S binding to recombinant \(\alpha_i \) or \(\alpha_{\text{long}} \) from *E. coli* was about equal to the stimulation of a preparation of bovine brain \(\alpha_i \) that was similarly reconstituted. These data are consistent with the finding of Asano et al. (1984) that the \(\beta\)-adrenergic receptor can regulate rabbit hepatic \(G_i \). The \(\beta\)-adrenergic receptor also stimulated the steady-state GTPase activities of the \(\alpha_i \)'s and \(\alpha_{\text{long}} \) in an agonist-dependent manner (Figure 4, Table II).

Figure 2: Regulation of GTP\(\gamma \)S binding by receptor depends on association of \(\alpha_i \) with vesicle-bound \(\beta\gamma \). Recombinant \(\alpha_{\text{long}} \) was combined with \(\beta\)-adrenergic receptor containing vesicles using four different protocols described below. GTP\(\gamma \)S binding was measured in the presence of 10 \(\mu \)M isoproterenol (A) or 100 nM propranolol (B). (A) \(\beta\)-Adrenergic receptor, \(\alpha_{\text{long}} \), and \(\beta\gamma \) (preparation 1) were reconstituted as described under Experimental Procedures. Each assay contained 2.0 fmol of receptor, 180 fmol of total \(\alpha_{\text{long}} \), and 236 fmol of \(\beta\gamma \). (B) Receptor alone was reconstituted as described, and soluble \(\alpha_{\text{long}} \) was added to the vesicles. Each assay contained 2.9 fmol of receptor and 200 fmol of \(\beta\gamma \). (C) Receptor and \(\beta\gamma \) were reconstituted as described, and soluble \(\alpha_{\text{long}} \) was added to the vesicles. Assays contained 2.3 fmol of receptor, 200 fmol of \(\alpha_{\text{long}} \), and 192 fmol of \(\beta\gamma \). (D) Receptor alone was reconstituted, and both \(\alpha_{\text{long}} \) (200 fmol/assay) and \(\beta\gamma \) (230 fmol/assay) were added to vesicles that contained 2.9 fmol of receptor per assay. For each system (A–D), Lubrol 12A9 was added to give a final concentration of 10 ppm to account for Lubrol that was added with the \(\beta\gamma \) subunits.

Table II: Receptor-Stimulated GTPase Activities of Receptor–\(\alpha\)–\(\beta\gamma \) Vesicles

<table>
<thead>
<tr>
<th>(\alpha) subunit</th>
<th>INE</th>
<th>DTT/INE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha_{\text{long}})</td>
<td>0.088</td>
<td>0.220</td>
</tr>
<tr>
<td>(\alpha_{\text{short}})</td>
<td>0.121</td>
<td>0.363</td>
</tr>
<tr>
<td>(\alpha_{1\text{,3}})</td>
<td>0.014</td>
<td>0.092</td>
</tr>
<tr>
<td>(\alpha_{1\text{,2}})</td>
<td>0.008</td>
<td>0.039</td>
</tr>
<tr>
<td>(\alpha_{1\text{,1}})</td>
<td>0.018</td>
<td>0.125</td>
</tr>
<tr>
<td>(\alpha_0)</td>
<td>0.002</td>
<td>0.013</td>
</tr>
<tr>
<td>bovine (\alpha_i)</td>
<td>0.008</td>
<td>0.005</td>
</tr>
</tbody>
</table>

* Vesicles that contained receptor, \(\beta\gamma \), and each of the recombinant \(\alpha \) subunits or the bovine 41-kDa \(\alpha \) subunit (prepared as described for Figure 3) were assayed for GTPase activity as described in the legend to Figure 4. Activities in a 10-min assay (15 min for the bovine \(\alpha \)) were expressed as moles of GTP hydrolyzed per minute per mole of total \(\alpha \) subunit. DTT, treated with dithiothreitol (see Figure 4); INE, 10 \(\mu \)M isoproterenol. Activities measured in the presence of propranolol alone have been subtracted from all of the values shown.

Again, receptor stimulated the \(\alpha_i \)'s more than the \(\alpha_{\text{long}} \). Slight stimulation of \(\alpha_{\text{long}} \) was sometimes detected.

This general rank order of selectivity among the different \(\alpha \) subunits (\(s > i_{1,3} > i_{1,2} \geq 0 \)) was maintained throughout a large number of GTPase and GTP\(\gamma \)S-binding experiments over several months, although quantitative variation in selectivity ratios was frequently greater than 2-fold. The variability did not appear to result from the choice of \(\beta\gamma \) preparation used in a specific experiment. A more reproducible assay is introduced below.

Treatment of the reconstituted vesicles with pertussis toxin inhibited isoproterenol-stimulated GTP\(\gamma \)S binding to the \(\alpha_i \)'s by 80–90% in several experiments (not shown). Inhibition was NAD-dependent. Such inhibition is characteristic of regulation of \(G_i \) by receptors that are generally considered to be \(G_i \)-coupled. There is no ADP-ribosylation site for pertussis toxin.
FIGURE 3: Stimulation of GTPyS binding to different α subunits by the β-adrenergic receptor. β-Adrenergic receptor (4-8 pmol) and βγ subunits (preparation 1, 46 pmol) were reconstituted with 10-20 pmol of the indicated α subunit as described under Experimental Procedures. The resulting vesicles were incubated for 2 h at 0 °C with 0.1 mM ascorbate and 0.1 mM propranolol in either the presence (G, ●) or the absence (A, △) of 5 mM DTT. Propranolol was added to stabilize thiol-reduced receptors (Pedersen & Ross, 1986). Vesicles were diluted 12-fold, and GTPyS binding was assayed at the indicated times in the presence of 10 μM (-)-isoproterenol (Q, O) or 0.1 μM (-)-propranolol (●, △). The assays contained total concentrations of (A) 1.05 fmol of receptor and 111 fmol of αlong, (B) 0.81 fmol of receptor and 33 fmol of αshort, (C) 1.2 fmol of receptor and 78 fmol of αshort, (D) 1.02 fmol of receptor and 27 fmol of αshort, (E) 1.8 fmol of receptor and 38 fmol of αshort, (F) 2.25 fmol of receptor and 22 fmol of αshort, and (G) 0.54 fmol of receptor and 72 fmol of 41-kDa αγ from bovine brain.

FIGURE 4: Regulation of the steady-state GTPase activity of reconstituted αlong by the β-adrenergic receptor. The same vesicles used in the experiment shown in Figure 3A were similarly incubated in the presence or absence of DTT. GTPase activity was assayed in the presence of either 10 μM isoproterenol or 0.1 μM propranolol. Each assay contained 0.7 fmol of receptor, 74 fmol of αlong, and 104 fmol of βγ.

Table III: β-Adrenergic Receptor Stimulated GDP Release from Reconstituted α Subunits

<table>
<thead>
<tr>
<th>α Subunit</th>
<th>basal kobs (min⁻¹)</th>
<th>dαlong/d[R] (min⁻¹ nM⁻¹)</th>
<th>dkobs/d[R] + DTT (min⁻¹ nM⁻¹)</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>αlong</td>
<td>0.25</td>
<td>0.22</td>
<td>0.96</td>
<td>0.99</td>
</tr>
<tr>
<td>αshort</td>
<td>0.32</td>
<td>1.19</td>
<td>0.96</td>
<td>0.99</td>
</tr>
<tr>
<td>α2</td>
<td>0.18</td>
<td>0.39</td>
<td>0.97</td>
<td>nd</td>
</tr>
<tr>
<td>α3</td>
<td>0.19</td>
<td>0.13</td>
<td>0.94</td>
<td>nd</td>
</tr>
<tr>
<td>α8</td>
<td>0.84</td>
<td>0.13</td>
<td>0.77</td>
<td>0.25</td>
</tr>
</tbody>
</table>

* Vesicles that contained each α subunit, βγ (preparation 2), and increasing concentrations of β-adrenergic receptor were prepared and assayed for equilibrium GDP exchange in the presence of isoproterenol and propranolol as described under Experimental Procedures. Each value of the first-order exchange rate constant, kobs, was derived from a nonlinear, one-component fit of duplicate four-point dissociation time courses, with the zero time value allowed to float during the fit. Each value of dαlong/d[R], the slope of the plot of kobs vs the concentration of agonist-ligated receptor, was derived from a linear fit for six to eight values of kobs, each obtained with a separate batch of vesicles that contained varying amounts of receptor (r, correlation coefficient). Separate batches of vesicles that contained αlong, αshort, and α∞ were incubated with DTT (+DDT in table) as described in the legend to Figure 3, and values of kobs were obtained from duplicate four-point time courses at 20 °C. For the DTT-treated vesicles, values of dαlong/d[R] were determined from four values of kobs. **nd, not determined.**

Guanine nucleotide exchange reactions in reconstituted systems display the existence of two pools of G protein, one that is regulated by receptor ("coupled") and another that is apparently inaccessible to receptor ("uncoupled"). The ratio of the two pools varies among preparations (Asano et al., 1984b; Brandt & Ross, 1986). Such behavior predicts biexponential kinetics in the presence of agonist: a slow rate controlled by the uncoupled G proteins and a faster rate controlled by the coupled G proteins. Coupled G proteins are predicted to display single-component, first-order kinetics regardless of the extent of stimulation (e.g., at different agonist concentrations) with the extent of stimulation reflected only in the magnitude of the single rate constant [see Chau et al. (1981)]. The receptor–G-protein vesicles used in this study also displayed a small amount of initial rapid GDP/GDP exchange in the presence or absence of agonist. This burst was observed for both equilibrium GDP/GDP exchange and GTPyS binding (Figure 5 and 6A). Its interference in the

Selection of the β-Adrenergic Receptor among G-Protein α Subunits. We routinely monitored the efficiency with which the β-adrenergic receptor regulates individual α subunits by assaying receptor-catalyzed exchange of bound and free GDP at equilibrium. This assay yielded more reproducible data than the GTPase binding or GTPyS-binding assay (Table III). Because GDP/GDP exchange and the binding of radiolabeled GTPyS monitor the same rate-limiting reaction, the results of both assays should be comparable [see Ross (1989)], and this prediction was confirmed by the data shown in Figure 5. The release of prebound [α32P]GDP mirrored both the rate and the extent of GTPyS binding to similar vesicles that had been prepared with unlabeled α subunit. Similar initial rates of receptor-catalyzed nucleotide exchange and a similarly sized pool of receptor-coupled G protein were observed using either protocol. The release of [α32P]GDP did not depend on the concentration of the reconstituted α subunit over a 20-fold range (Rubenstein, 1990). Neither the rate nor the extent of
vesicles (Figure 6B). The fraction of change could be fit to a two-component first-order model. The slow component displayed a rate constant equal to that observed in the absence of agonist. Both basal and receptor-stimulated exchange could be fit to a two-component first-order model:

$$\frac{[\alpha-D^*]_t}{[\alpha-D^*]_w} = F e^{-k_b t} + (1 - F) e^{-k_r t}$$

where $\alpha-D^*$ is [32P]GDP-ligated α subunit, k_b is the apparent first-order rate constant for receptor-stimulated exchange, k_r is the rate constant for basal exchange, and F is the fraction of subunit that is accessible to receptor.

When GDP exchange was measured in vesicles that contained increasing amounts of β-adrenergic receptor, it was found that k_r, the rate constant for receptor-stimulated exchange, increased linearly with the concentration of receptor (Figure 6B). The values of k_r that were determined from a one-component fit of exchange in the absence of agonist or from a two-component fit in the presence of agonist were equal and did not vary with the concentration of receptors in the vesicles (Figure 6B). The fraction of α subunit that was accessible to receptor (F) was not dependent on the concentration of receptor over the range used in these experiments (Figure 6C). This suggests that the dependence of k_r on the concentration of receptor does not in some way reflect a variation in the number of G proteins that have access to receptors. The coupled fraction also did not differ by more than 2-fold among vesicles prepared with different α subunits.

Although the approach to measuring exchange shown in Figure 6 is analytically valid, it depends on initiating receptor-catalyzed nucleotide exchange after significant dissociation of labeled GDP has occurred. It also depends on a multiparameter fit in which errors in estimates of single parameters may be large and heavily dependent on the fits of other parameters. Therefore, we routinely compared the regulation of different α subunits by receptor by analyzing only the initial rates of dissociation according to a single-component model.

The initial rate of GDP/GDP exchange is described by a single rate constant, k_{obs}, that is a weighted combination of k_r (defined as described above), k_{o0}' (a composite description of all non-receptor-promoted exchange), and F (still defined as the fraction of G protein that undergoes receptor-stimulated exchange). If k_{o0}' and F remain constant within an experiment, then values of k_{obs} obtained at an arbitrary early time can be related to k_r by the equations (see Discussion):

$$e^{k_{obs}} = F e^{-k_r t} + (1 - F) e^{-k_{o0}'}$$

$$k_r = -\ln \left[\frac{e^{k_{obs}} - e^{k_{o0}'}(1 - F)}{F} \right]$$

The values of k_{obs} that were determined by analysis of initial rates of GDP exchange increased linearly with the concentration of β-adrenergic receptor, as was found using the more complex fitting protocol described above (Figure 6B). There was a negligible effect of receptor on the rate in the absence of agonist, as would be expected if only the agonist-ligated receptor acts as a catalyst of nucleotide exchange.

The linear dependence of k_{obs} on the concentration of receptor ($dK_{obs}/d[R]$; as in Figure 6B) is an index of the intrinsic efficiency with which the receptor regulates different α sub-
G-Protein Selectivity of β-Adrenergic Receptors

To determine the efficiency of coupling of the β-adrenergic receptor with different G-protein α subunits, we assayed the initial rates of [32P]GDP release from multiple batches of vesicles that contained different concentrations of β-adrenergic receptor and constant amounts of each of the various [32P]GDP-ligated α subunits. For each G protein, $d[K_{obs}/d[R]]$ was determined using values of K_{obs} obtained for six to eight preparations of vesicles that contained different concentrations of receptor. The results of several such titrations are summarized in Table III. For the β-adrenergic receptor, $d[K_{obs}/d[R]]$ was about 3-4-fold higher for either form of α_6 than for either $\alpha_{1,2}$ or $\alpha_{1,3}$, which is consistent with our previous studies of hepatic G_{α} (Asano et al., 1984). β-Adrenergic stimulation of $\alpha_{1,2}$ and $\alpha_{1,3}$ was observed in all experiments. The receptor regulated both $\alpha_{1,2}$ and α_6 much less efficiently than the α_6's; $d[K_{obs}/d[R]]$ was about 10-fold lower for both $G_{1,2}$ and G_α. This level of regulation of $\alpha_{1,2}$ was a consistent observation and might be physiologically important. The stimulation of α_6 which was undetectable in assays of GTPγS binding and steady-state GTPase, is probably not meaningful. The nonstimulated rate of GDP exchange for α_6 was already quite high, and our ability to quantitate stimulation over this basal rate was in fact marginal. We do not believe that the differences in $d[K_{obs}/d[R]]$ between the long and short forms of α_6 or between $\alpha_{1,2}$ and $\alpha_{1,3}$ are meaningful; they are within the range of experimental variability.

DISCUSSION

Extensive sequence similarity among the G-protein α subunits and the G-protein-coupled receptors suggests that a single receptor is able to regulate more than one G protein or that a single G protein could be regulated by more than one receptor. For some receptors, such divergent coupling has been relatively easy to demonstrate. For example, the M1 muscarinic cholinergic receptor expressed in CHO cells stimulates inositol triphosphate release through the action of two G proteins, only one of which is sensitive to inhibition by pertussis toxin (Ashkenazi et al., 1989). The number and identity of the G proteins that convey a receptor's signal are usually more difficult to determine.

The initial observation that the β-adrenergic receptor can stimulate G_1 (Asano et al., 1984a) was puzzling because β-adrenergic stimulation has been consistently associated only with the $G_{1,2}$-mediated stimulation of adenylyl cyclase and the only known activity of $G_{1,2}$ was to inhibit the cyclase. Because G_1 and G_2 are now known to regulate several effector proteins, the β-adrenergic stimulation of $G_{1,2}$ and $G_{1,3}$ can be interpreted as a mechanism for generating multiple second messengers from a single β-adrenergic signal.

The data reported here suggest that signaling from the β-adrenergic receptor is primarily mediated by G_1, but that it is also significantly routed through $G_{1,3}$ and $G_{1,3}$. Regulation of these G's predicts the occurrence of β-adrenergic stimulation of a phospholipase A$_2$, a K$^+$ channel, or another physiological target of G_1, and we are attempting to measure such regulation. From the present data, it seems less likely that the β-adrenergic receptor regulates $G_{1,2}$ to a significant extent, and significant regulation of G_2 seems improbable. $G_{1,2}$, which is more widespread among animal tissues than $G_{1,1}$ or $G_{1,3}$ (Mumbey et al., 1988), may respond to a more restricted or different range of receptors than do $G_{1,1}$ and $G_{1,3}$. The range of targets of the β-adrenergic receptor may actually be broader than $G_{1,1}$, $G_{1,2}$, and $G_{1,3}$. We have not observed significant β-adrenergic regulation of G_1 (Parker et al., 1991; S. K.-F. Wong, unpublished data), but there is some evidence that the receptor can modulate an Na/H exchange activity through
a G protein that is neither G, nor G, (Barber et al., 1989).

These data and those of Asano et al. (1984a) indicate that the \(\beta \)-adrenergic receptor regulates G, more efficiently than was observed by Cerione et al. (1985), who also used a reconstituted assay system. Neither group determined which \(\alpha \)'s were in their G, preparations. Asano et al. (1984a) used G, prepared from rabbit liver, which can contain variable ratios of \(\alpha_{i,2} \) to \(\alpha_{i,1} \) plus \(\alpha_{i,3} \). Cerione et al. may have used a preparation that contained relatively more G, although G, does not appear to be the major \(\alpha \) in purified human erythrocyte G, (Carty & Iyengar, 1990). Reduction of disulfides in the receptor, which probably occurred in the experiments of Asano et al. (1984a), is not a determinant of the receptor's selectivity (Table II) and therefore does not account for receptor-G, coupling. Treatment of the receptor with DTT simply makes the less efficient regulation of G, easier to observe.

The parameter that was used to compare the efficiency of regulation of different G proteins, \(\frac{d\kappa_{os}}{d[R]} \), was reproducible among multiple sets of data and intuitively provides a good measure of coupling. A more concrete comparison and more basic mechanistic information could have been derived from a study of \(\frac{d\kappa}{d[R]} \), the actual efficiency of the receptor as a catalyst of nucleotide exchange. Significant non-receptor-mediated GDP exchange precluded our reliably extracting this constant from the data with acceptable precision. Because \(k_{ob} \) increased linearly with receptor concentration and because the fraction of each G protein that was regulated by receptor did not vary widely (0.2–0.5), the dependence of \(k_{ob} \) on receptor was a valid basis for comparison of coupling. We did not observe the interesting saturable dependence of coupling on the concentration of G protein that was reported by Senogles et al. (1990) for the D, dopaminergic receptor. There is no theoretical reason either to support or to question such kinetic behavior over a given range of G-protein concentrations. The lack of dependence of \(k_{ob} \) on the concentration of G protein found in the present study is consistent with the relatively low affinity of the turkey erythrocyte \(\beta \)-adrenergic receptor for G, that was predicted by Levitzki and co-workers from kinetic analysis of adenylyl cyclase activation (Tolkovsky & Levitzki, 1978, 1981; Tolkovsky et al., 1982; discussed by Rubenstein (1990)).

Reconstituted Systems for Assaying the Selectivity of Receptors and G Proteins. The analysis of receptor-G-protein selectivity in a purified and reconstituted system has both strengths and weaknesses. The most obvious advantage is that a reconstituted system can use a clearly identified G protein. Measurements of second-messenger responses in intact cells or membranes often do not indicate which G protein (or proteins) may be conveying the signal from a receptor. The use of purified recombinant \(\alpha \) subunits further clarifies matters. Because \(\alpha \) subunits are structurally similar, it is difficult to purify either a single \(\alpha \) subunit or a trimeric G protein free of contamination by others. It is also difficult to demonstrate such purification conclusively. Reconstitution using different recombinant \(\alpha \) subunits and a single preparation of \(\beta \gamma \) avoids any selective influence on coupling that may be exerted by the different \(\beta \gamma \) subunits that are found in preparations of trimeric G proteins (see below). Reconstitutive assays also allow a quantitative comparison of the regulation of different G proteins by receptors. Interpreting G-protein activation according to signaling in intact systems is complicated by our ignorance of the efficiency with which G proteins regulate effectors.

The assay system described here is applicable to any G-protein-coupled receptor, including recombinant wild-type and mutant receptors that have been expressed in heterologous cells. The receptor need only be relatively concentrated and free of substantial G-protein contamination. We have used this system to study the G-protein selectivity of muscarinic cholinergic receptors (Parker et al., 1991), to study the selectivity of chimeric receptors (S. K.-F. Wong and E. M. Ross, in preparation), and to study the regulation of site-directed mutants in \(\alpha \).

The recombinant \(\alpha \) subunits from \(E. coli \) appear to interact normally with the \(\beta \)-adrenergic receptor. The behavior of recombinant \(\alpha_{i,1} \) and \(\alpha_{i,3} \) was similar to that of the bovine 41-kDa \(\alpha \) subunit (Figure 3 and other data not shown), and the behavior of recombinant \(\alpha \) was similar to that observed previously with purified rabbit hepatic G, [see Brandt and Ross (1985) for example]. However, \(\alpha \) subunits expressed in \(E. coli \) do differ in some respects from the same proteins in mammalian cells. Both \(\alpha \) and \(\alpha_{i,3} \) in animal cells are myristoylated at their amino termini, but these subunits are not myristoylated when expressed in \(E. coli \) (Linder et al., 1991). Although mammalian \(\alpha_{i,3} \) is not myristoylated, its amino terminus is blocked by an unknown modification, and it is more hydrophobic than would be predicted from its amino acid sequence (Sternweis, 1986). G-Protein \(\alpha \) subunits from \(E. coli \) regulate adenylyl cyclase and ion channels with lower potency than do the same subunits from mammalian cells (Graziano et al., 1989; Mattera et al., 1989) and bind to \(\beta \gamma \) with lower affinity (Linder et al., 1991) Non-myristoylated \(\alpha_{i,3} \) does not bind tightly to the plasma membrane of mammalian cells (Munby et al., 1990). Data on protein–protein interactions of recombinant subunits from \(E. coli \) must therefore be interpreted carefully.

Role of the \(\beta \gamma \) Subunits. The G-protein \(\beta \gamma \) subunits are required for the association of \(\alpha \) subunits with phospholipid bilayers (Sternweis, 1986; this study) and for receptor–\(\alpha \) subunit coupling (Fung, 1983; Florio & Sternweis, 1989; this study). They also regulate nucleotide binding to the \(\alpha \) subunit (Higashijima et al., 1987). Non-retinal tissues express at least two species of \(\beta \) subunit (Evans et al., 1987) and at least three \(\gamma \) subunits (Tamir et al., 1991), and preparations of isolated \(\beta \gamma \) subunits or of trimeric G proteins generally contain mixtures of \(\beta \) and \(\gamma \) species. No previous evidence suggested that non-retinal \(\beta \gamma \) subunits were selective among either receptors or \(\alpha \) subunits. However, the two preparations of \(\beta \gamma \) used here differed reproducibly in their ability to efficiently reconstitute a recombinant system described here may provide a good assay medium for probing specific functions of \(\beta \) and \(\gamma \) when these defined \(\beta \gamma \) dimers become available.

ACKNOWLEDGMENTS

M.E.L. thanks Alfred G. Gilman for his support during this project.
G-Protein Selectivity of β-Adrenergic Receptors

REFERENCES