Laboratory of Elliott M. Ross

Publications

An, S.W., Cha, S.K., Yoon, J., Chang, S., Ross, E.M. and Huang, C.L. (2011) WNK1 promotes PIP2 synthesis to coordinate growth factor and GPCR-Gq signaling. Curr. Biol., 21:1979-1987 PDF

Asano,T., Katada,T., Gilman,A.G., and Ross,E.M. (1984). Activation of the inhibitory GTP-binding protein of adenylate cyclase, Gi, by the β-adrenergic receptors in reconstituted phospholipid vesicles. J. Biol. Chem. 259, 9351-9354. PDF

Asano,T. and Ross,E.M. (1984). Catecholamine-stimulated guanosine 5'-O-(3-thiotriphosphate) binding to the stimulatory GTP-binding protein of adenylate cyclase: Kinetic analysis in reconstituted phospholipid vesicles. Biochemistry 23, 5467-5471. PDF

Asano,T., Pedersen,S.E., Scott,C.W., and Ross,E.M. (1984). Reconstitution of catecholamine-stimulated binding of guanosine 5'-O-(3-thiotriphosphate) to the stimulatory GTP-binding protein of adenylate cyclase. Biochemistry 23, 5460-5467. PDF

Barker,S.A., Wang,J., Sierra,D.A., and Ross,E.M. (2001). RGSZ1 and Ret RGS: Two of several splice variants from the gene RGS20. Genomics 78, 223-229. PDF

Berstein,G., Blank,J.L., Jhon,D.-Y., Exton,J.H., Rhee,S.G., and Ross,E.M. (1992). Phospholipase C-β1 is a GTPase-activating protein for Gq/11, its physiologic regulator. Cell 70, 411-418. PDF

Berstein,G., Blank,J.L., Smrcka,A.V., Higashijima,T., Sternweis,P.C., Exton,J.H., and Ross,E.M. (1992). Reconstitution of agonist-stimulated phosphatidylinositol 4,5- bisphosphate hydrolysis using purified m1 muscarinic receptor, Gq/11 and phospholipase C-β1. J. Biol. Chem. 267, 8081-8088. PDF

Biddlecome,G.H., Berstein,G., and Ross,E.M. (1996). Regulation of phospholipase C-β1 by Gq and m1 muscarinic cholinergic receptor. Steady-state balance of receptor-mediated activation and GAP-promoted deactivation. J. Biol. Chem. 271, 7999-8007. PDF

Brandt,D.R. and Ross,E.M. (1986). Catecholamine-stimulated GTPase cycle: Multiple sites of regulation by β-adrenergic receptor and Mg2+ studied in reconstituted receptor-Gs vesicles. J. Biol. Chem. 261, 1656-1664. PDF

Brandt,D.R. and Ross,E.M. (1986). Effect of Al3+ plus F- on the catecholamine-stimulated GTPase activity of purified and reconstituted Gs. Biochemistry 25, 7036-7041. PDF

Brandt,D.R. and Ross,E.M. (1985). GTPase activity of the stimulatory GTP-binding regulatory protein of adenylate cyclase, Gs. Accumulation and turnover of enzyme-nucleotide intermediates. J. Biol. Chem. 260, 266-272. PDF

Brandt,D.R., Asano,T., Pedersen,S.E., and Ross,E.M. (1983). Reconstitution of catecholamine-stimulated guanosinetriphosphatase activity. Biochemistry 22, 4357-4362. PDF

Cerione,R.A. and Ross,E.M. (1991). Reconstitution of receptors and G proteins in phospholipid vesicles. In Methods in Enzymology, R.A.Johnson and J.D.Corbin, eds. (San Diego, CA: Academic Press), pp. 329-342.

Chang. S., Ross, E.M. (2012) Activation biosensor for G protein-coupled receptors: a FRET-based m1 muscarinic activation sensor that regulates Gq. PLoS One, 7 (2012), p. e45651 PDF

Chidiac,P., Markin,V.S., and Ross,E.M. (1999). Kinetic control of guanine nucleotide binding to soluble Gαq. Biochem. Pharmacol. 58, 39-48. PDF

Chidiac,P. and Ross,E.M. (1999). PLC-β1 directly accelerates GTP hydrolysis by Gαq and is inhibited by Gβγ subunits. J. Biol. Chem. 274, 19639-19643. PDF

Cobb,M.H. and Ross,E.M. (2006). Principles of cell signaling. In Cells, B.Lewin, V.R.Cassimeris, V.R.Lingappa, and G.Plopper, eds. (Sudbury, MA: Jones and Bartlett), pp. 589-643. PDF

Colombo,M.I., Mayorga,L.S., Nishimoto,I., Ross,E.M., and Stahl,P.D. (1994). Gs regulation of endosome fusion suggests a role for signal transduction pathways in endocytosis. J. Biol. Chem. 269, 14919-14923. PDF

Fleming,J.W. and Ross,E.M. (1980). Reconstitution of β-adrenergic receptors into phospholipid vesicles: Restoration of [125I]iodohydroxybenzylpindolol binding to digitonin-solubilized receptors. J. Cyclic Nucleotide Res. 6, 407-419.

Florio,V.A. and Ross,E.M. (1983). Regulation of the catalytic component of adenylate cyclase. Potentiative interaction of stimulating ligands and 2',5'- dideoxyadenosine. Molec. Pharmacol. 24, 195-202. PDF

Hepler,J.R., Biddlecome,G.H., Kleuss,C., Camp,L.A., Hofmann,S.L., Ross,E.M., and Gilman,A.G. (1996). Functional importance of the amino terminus of Gqα. J. Biol. Chem. 271, 496-504. PDF

Hertel,C., Nunnally,M.H., Wong,S.K.F., Murphy,E.A., Ross,E.M., and Perkins,J.P. (1990). A truncation mutation in the avian β-adrenergic receptor causes agonist-induced internalization and GTP-sensitive agonist-binding characteristic of mammalian receptors. J. Biol. Chem. 265, 17988-17994. PDF

Higashijima,T. and Ross,E.M. (1991). Mapping of the mastoparan-binding site on G proteins: cross- linking of [125I-Tyr3,Cys11]mastoparan to Go. J. Biol. Chem. 266, 12655-12661. PDF

Higashijima,T., Uzu,S., Nakajima,T., and Ross,E.M. (1988). Mastoparan, a peptide toxin from wasp venom, mimics receptors by activating GTP-binding regulatory proteins (G proteins). J. Biol. Chem. 263, 6491-6494. PDF

Higashijima,T., Burnier,J., and Ross,E.M. (1990). Regulation of Gi and Go by mastoparan, related amphiphilic peptides, and hydrophobic amines. J. Biol. Chem. 265, 14176-14186. PDF

Higashijima,T., Ferguson,K.M., Sternweis,P.C., Ross,E.M., Smigel,M.D., and Gilman,A.G. (1987). The effect of activating ligands on the intrinsic fluorescence of guanine nucleotide-binding regulatory proteins. J. Biol. Chem. 262, 752-756. PDF

Ilkaeva,O., Kinch,L.N., Paulssen,R.H., and Ross,E.M. (2002). Mutations of the carboxyl terminal domain of phospholipase C-β1 delineate the dimer interface and a potential Gαq interaction site. J. Biol. Chem. 277, 4294-4300. PDF

Ingi,T., Krumins,A.M., Chidiac,P., Brothers,G.M., Chung,S., Snow,B.E., Barnes,C.A., Lanahan,A.A., Siderovski,D.P., Ross,E.M., Gilman,A.G., and Worley,P.F. (1998). Dynamic regulation of RGS2 suggests a novel mechanism in G-protein signaling and neuronal plasticity. J. Neurosci. 18, 7178-7188. PDF

Jiang,L.I., Collins,J., Davis,R., Lin,K.-M., DeCamp,D., Roach,T., Hsueh,R.C., Ross,E.M., Taussig,R., Fraser,I., and Sternweis,P.C. (2007). A spingosine-1-phosphate/G13 pathway enhances cAMP production in murine macrophages. J. Biol. Chem. 282, 10576-10584. PDF

Kadamur, G., Ross, E.M. (2013) Mammalian Phospholipase C. Annu. Rev. Physiol., 75:127-54 PDF

Larner,A.C. and Ross,E.M. (1981). Alteration in the protein components of catecholamine-sensitive adenylate cyclase during maturation of rat reticulocytes. J. Biol. Chem. 256, 9551-9557. PDF

Luxembourg,A., Hekman,M., and Ross,E.M. (1991). Immunologic mapping of the amino- and carboxy-termini of the turkey erythrocyte β-adrenergic receptor: selective proteolysis of both domains. FEBS Lett. 283, 155-158. PDF

May,D.C. and Ross,E.M. (1988). Rapid binding of guanosine 5'-0-(3-thiotriphosphate) to an apparent complex of β-adrenergic receptor and the GTP-binding regulatory protein Gs. Biochemistry 27, 4888-4893. PDF

May,D.C., Ross,E.M., Gilman,A.G., and Smigel,M.D. (1985). Reconstitution of catecholamine-stimulated adenylate cyclase activity using three purified proteins. J. Biol. Chem. 260, 15829-15833. PDF

Meij,J.T.A. and Ross,E.M. (1996). Purification and characterization of phospholipase C-β1 mutants expressed in E. coli. Biochim. Biophys. Res. Comm. 225, 705-711. PDF

Moxham,C.P., Ross,E.M., George,S.T., and Malbon,C.C. (1988). β-Adrenergic receptors display intramolecular disulfide bridges in situ: Analysis by immunoblotting and functional reconstitution. Molec. Pharmacol. 33, 486-492. PDF

Mu,J.-H., Chua,N.-H., and Ross,E.M. (1997). Expression of human muscarinic cholinergic receptors in tobacco. Plant Molec. Biol. 34, 357-362. PDF

Mukhopadhyay,S. and Ross,E.M. (2001). Quench-flow kinetic measurement of individual reactions of G-protein-catalyzed GTPase cycle. Meth. Enzymol. 344, 350-369. PDF

Mukhopadhyay,S. and Ross,E.M. (1999). Rapid GTP binding and hydrolysis by Gq promoted by receptor and GTPase-activating proteins. Proc. Natl. Acad. Sci. USA 96, 9539-9544. PDF

Northup,J.K., Sternweis,P.C., Smigel,M.D., Schleifer,L.S., Ross,E.M., and Gilman,A.G. (1980). Purification of the regulatory component of adenylate cyclase. Proc. Natl. Acad. Sci. USA 77, 6516-6520.

Parker,E.M., Nunnally,M.H., Swigart,P., Perkins,J.P., and Ross,E.M. (1995). Carboxyl terminal domains in the avian β1-adrenergic receptor that regulate agonist-promoted endocytosis. J. Biol. Chem. 270, 6482-6487. PDF

Parker,E.M., Kameyama,K., Higashijima,T., and Ross,E.M. (1991). Reconstitutively active G protein-coupled receptors purified from baculovirus-infected insect cells. J. Biol. Chem. 266, 519-527. PDF

Parker,E.M. and Ross,E.M. (1991). Truncation of the extended carboxyl-terminal domain increases the expression and regulatory activity of the avian β-adrenergic receptor. J. Biol. Chem. 266, 9987-9996. PDF

Paulssen,R.H., Woodson,J., Liu,Z., and Ross,E.M. (1996). Carboxyl-terminal fragments of phospholipase C-β1 with intrinsic Gq GTPase-activating protein (GAP) activity. J. Biol. Chem. 271, 26622-26629. PDF

Pedersen,S.E. and Ross,E.M. (1985). Functional activation of β-adrenergic receptors by thiols in the presence or absence of agonists. J. Biol. Chem. 260, 14150-14157.430 PDF

Pedersen,S.E. and Ross,E.M. (1982). Functional reconstitution of β-adrenergic receptors and the stimulatory GTP-binding protein of adenylate cyclase. Proc. Natl. Acad. Sci. USA 79, 7228-7232. PDF

Philip, F.,  Kadamur, G., González Silos, R.,  Woodson, J.  and  Ross, E.M. (2010)  Synergistic activation of phospholipase C-β3 by Gαq and Gβγ describes a simple two-state coincidence detector.   Curr. Biol., 20:1327-1335. PDF

Posner,B.A., Mukhopadhyay,S., Tesmer,J.J., Gilman,A.G., and Ross,E.M. (1999). Modulation of the affinity and selectivity of RGS protein interaction with Gα subunits by a conserved asparagine/serine residue. Biochemistry 38, 7773-7779. PDF

Ranganathan,R. and Ross,E.M. (1997). PDZ domain proteins - Scaffolds for signaling complexes. Curr. Biol. 7, R770-R773. PDF

Rebres, R.A., Roach, T.I.A., Fraser, I.D.C., Philip, F., Moon, C., Lin, K.-M., Liu, J., Santat, L., Cheadle, L., Ross, E.M., Sternweis, P.C., Simon, M.I. and Seaman, W.E. (2011) Synergistic Ca2+ responses by Gαi- and Gαq-coupled GPCRs require a single PLC-β isoform that is sensitive to both Gβγ and Gαq. J. Biol. Chem. 286: 942-951. PDF

Ross,E.M. and Gilman,A.G. (1980). Biochemical properties of hormone-sensitive adenylate cyclase. Annu. Rev. Biochem. 49, 533-564. PDF

Ross,E.M., Wong,S.K.F., Rubenstein,R.C., and Higashijima,T. (1988). Functional domains in the β-adrenergic receptor. Cold Spring Harbor Symp. Quant. Biol. 53, 499-506.

Ross, E. M. G protein GAP's: Regulation of speed, amplitude and signaling selectivity. Rec.Prog.Hormone Res. 50, 207-221. 1995. PDF

Ross,E.M. and Wilkie,T.M. (2000). GTPase-activating proteins (GAPs) for heterotrimeric G proteins: regulators of G protein signaling (RGS) and RGS-like proteins. Annu. Rev. Biochem. 69, 795-827. PDF

Ross,E.M. (1995). Palmitoylation in G-protein signaling pathways. Curr. Biol. 5, 107-109.

Ross,E.M. (1982). Phosphatidylcholine-promoted interaction of the catalytic and regulatory proteins of adenylate cyclase. J. Biol. Chem. 257, 10751-10758. PDF

Ross,E.M. (1981). Physical separation of the catalytic and regulatory proteins of hepatic adenylate cyclase. J. Biol. Chem. 256 , 1949-1953. PDF

Ross,E.M. (2001). Quantitative assays for GTPase-activating proteins. Meth. Enzymol. 344, 601-617. PDF

Ross,E.M., Howlett,A.C., Ferguson,K.M., and Gilman,A.G. (1978). Reconstitution of hormone-sensitive adenylate cyclase activity with resolved components of the enzyme. J. Biol. Chem. 253, 6401-6412. PDF

Ross,E.M. (1991). Reconstitution of the β-adrenergic receptor and its biochemical function. In The β-Adrenergic Receptor, J.P.Perkins, ed. (Clifton, NJ: The Humana Press, Inc.), pp. 125-179.

Ross,E.M. and Higashijima,T. (1994). Regulation of G-protein activation by mastoparans and other cationic peptides. Meth. Enzymol. 237, 26-37.

Ross,E.M., Berstein,G., and Karandikar,M. (1994). Regulation of receptor-G protein signaling by the effector enzyme phospholipase C-β. In Endothelium-Derived Factors and Vascular Functions, T.Masaki, ed. (Amsterdam, The Netherlands: Elsevier Science B.V.), pp. 211-218.

Ross,E.M. and Gilman,A.G. (1977). Resolution of some components of adenylate cyclase necessary for catalytic activity. J. Biol. Chem. 252, 6966-6969. PDF

Ross,E.M., Mateu,D., Gomes,A.V., Arana,C., Tran,T., and Litosch,I. (2006). Structural Determinants for Phosphatidic Acid Regulation of Phospholipase C-β1. J. Biol. Chem. 281, 33087-33094. PDF

Ross, E.M. (2008) Coordinating speed and amplitude in G protein signaling. Curr. Biol. 18:R777-R783. PDF

Ross, E.M., and Cobb, M.H. (2010)  Principles of Cell Signaling (Chapter 18), in Cells, L. Cassimeris, V. R. Lingappa, G. Plopper, eds., Jones and Bartlett, Sudbury, MA. PDF

Ross, E.M. (2011) Gαq and Phospholipase C-β: Turn On, Turn Off, and Do It Fast. Science Signaling, 4(159):pe5 (1-3). PDF

Rubenstein,R.C., Linder,M.E., and Ross,E.M. (1991). Selectivity of the β-adrenergic receptor among Gs, Gi's and Go: assay using recombinant α subunits in reconstituted phospholipid vesicles. Biochemistry 30, 10769-10777. PDF

Rubenstein,R.C., Wong,S.K.F., and Ross,E.M. (1987). The hydrophobic tryptic core of the β-adrenergic receptor retains Gs-regulatory activity in response to agonists and thiols. J. Biol. Chem. 262, 16655-16662. PDF

Shin,D.M., Dehoff,M., Luo,X., Kang,S.H., Tu,J., Nayak,S.K., Ross,E.M., Worley,P.F., and Muallem,S. (2003). Homer 2 tunes G protein-coupled receptors stimulus intensity by regulating RGS proteins and PLCβ GAP activities. J. Cell Biol. 162, 293-303. PDF

Sukumar,M., Ross,E.M., and Higashijima,T. (1997). A Gs-selective analog of the receptor-mimetic peptide mastoparan binds to Gsα in a kinked helical conformation. Biochemistry 36, 3632-3639. PDF

Tang,W., Tu,Y., Nayak,S.K., Woodson,J., Jehl,M., and Ross,E.M. (2006). Gβγ Inhibits Gα GTPase-activating Proteins  (GAPs) by Inhibition of Gα-GTP Binding during Stimulation by Receptor. J. Biol. Chem. 281, 4746-4753. PDF

Thomas,C.J., Du,X., Li,P., Wang,Y., Ross,E.M., and Sprang,S.R. (2004). Uncoupling conformational change from GTP hydrolysis in a heterotrimeric G protein α subunit. Proc. Natl. Acad. Sci. USA 101, 7560-7565. PDF

Tu,Y., Woodson,J., and Ross,E.M. (2001). Binding of RGS proteins to phospholipid bilayers: contribution of location and/or orientation to GAP activity. J. Biol. Chem. 276, 20160-20166. PDF

Tu,Y., Wang,J., and Ross,E.M. (1997). Inhibition of brain Gz GAP and other RGS proteins by palmitoylation of G protein α subunits. Science 278, 1132-1135. PDF

Tu,Y., Popov,S., Slaughter,C., and Ross,E.M. (1999). Palmitoylation of a conserved cysteine in the regulator of G protein signaling (RGS) domain modulates the GTPase-activating activity of RGS4 and RGS10. J. Biol. Chem. 274, 38260-38267. PDF

Tu, Y., Nayak, S. K., Woodson, J., and Ross, E. M. (2003). Phosphorylation-regulated inhibition of the Gz GTPase-activating protein activity of RGS proteins by synapsin I. J. Biol. Chem. 278, 52273-52281. PDF

Turcotte, M., Tang, W., and Ross, E.M. (2008) Coordinate regulation of G protein signaling via dynamic interactions of receptor and GAPs. PLoS Comput. Biol. 4:e10000148. PDF

Wang,J., Tu,Y., Woodson,J., Song,X., and Ross,E.M. (1997). A GTPase-activating protein for the G protein Gαz: Identification, purification and mechanism of action. J. Biol. Chem. 272, 5732-5740. PDF

Wang,J., Tu,Y., Mukhopadhyay,S., Chidiac,P., Biddlecome,G.H., and Ross,E.M. (1999). GTPase-activating proteins (GAPs) for heterotrimeric G proteins. In G Proteins: Techniques of Analysis, D.R.Manning, ed. (Boca Raton: CRC Press), pp. 123-151. PDF

Wang,J., Frost,J.A., Cobb,M.H., and Ross,E.M. (1999). Reciprocal signaling between heterotrimeric G proteins and the p21-stimulated protein kinase PAK. J. Biol. Chem. 274, 31641-31647. PDF

Wang,J., Ducret,A., Tu,Y., Kozasa,T., Aebersold,R., and Ross,E.M. (1998). RGSZ1, a Gz-selective RGS protein in brain:  Structure, membrane association, regulation by Gαz phosphorylation, and relationship to a Gz GTPase-activating protein subfamily. J. Biol. Chem. 273, 26014-26025. PDF

Wang,J. and Ross,E.M. (1995). The carboxy terminal anchorage domain of the turkey β1-adrenergic receptor is encoded by an alternatively spliced exon. J. Biol. Chem. 270, 6488-6495. PDF

Wang,X., Zeng,W., Soyombo,A.A., Tang,W., Ross,E.M., Barnes,A.P., Milgram,S.L., Penninger,J.M., Allen,P.B., Greengard,P., and Muallem,S. (2005). Spinophilin regulates Ca2+ signalling by binding the N-terminal domain of RGS2 and the third intracellular loop of G-protein-coupled receptors. Nature Cell Biol. 7, 405-411. PDF

Wong,S.K.F., Parker,E.M., and Ross,E.M. (1990). Chimeric muscarinic cholinergic:β-adrenergic receptors that activate Gs in response to muscarinic agonists. J. Biol. Chem. 265, 6219-6224. PDF

Wong,S.K.F. and Ross,E.M. (1994). Chimeric muscarinic cholinergic:β-adrenergic receptors that are functionally promiscuous among G proteins. J. Biol. Chem. 269, 18968-18976. PDF

Wong,S.K.F., Slaughter,C., Ruoho,A.E., and Ross,E.M. (1988). The catecholamine binding site of the β-adrenergic receptor is formed by juxtaposed membrane-spanning domains. J. Biol. Chem. 263, 7925-7928. PDF

Yarden,Y., Rodriguez,H., Wong,S.K.F., Brandt,D.R., May,D.C., Burnier,J., Harkins,R.N., Chen,E.Y., Ramachandran,J., Ullrich,A., and Ross,E.M. (1986). The avian β-adrenergic receptor: Primary structure and membrane topology. Proc. Natl. Acad. Sci. USA 83, 6795-6799. PDF

Zeng,W., Xu,X., Popov,S., Mukhopadhyay,S., Chidiac,P., Swistok,J., Danho,W., Yagaloff,K.A., Fisher,S.L., Ross,E.M., Muallem,S., and Wilkie,T.M. (1998). The N-terminal domain of RGS4 confers receptor-selective inhibition of G protein signaling. J. Biol. Chem. 273, 34687-34690. PDF

Zhang,Y., Ross,E.M., and Snell,W.J. (1991). ATP-dependent regulation of flagellar adenylylcyclase in gametes of Chlamydomonas reinhardtii. J. Biol. Chem. 266, 22954-22959. PDF

 

©2014 Ross Laboratory, University of Texas Southwestern Medical Center