Organometallics: Hard to define usefully and completely at the same time, but generally: Compounds containing metal-carbon bond(s).

Catalysis further complicates the issue:

Buchwald, JACS, 1998, 9722

Zhang, JACS, 2003, 6370
Organometallics is dominated by d electrons and orbitals

Most commonly used in organometallic reactions

Transition metals (copper often included)

Usually d⁰

p e- dominate

Usually have e- configuration

Xd¹⁰(X+1)sⁿ

Note: for our purposes, t.m.’s will be s⁰
<table>
<thead>
<tr>
<th>Elements</th>
<th>Pauling Electronegativity (ε)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H 2.2</td>
<td></td>
</tr>
<tr>
<td>Li 1.0 Be 1.6</td>
<td></td>
</tr>
<tr>
<td>Na 0.9 Mg 1.3</td>
<td></td>
</tr>
<tr>
<td>K 0.8 Ca 1.0</td>
<td></td>
</tr>
<tr>
<td>Rb 0.8 Sr 1.0</td>
<td></td>
</tr>
<tr>
<td>Cs 0.8 Ba 0.9</td>
<td></td>
</tr>
<tr>
<td>Alkali and main group, electronegativity decreases down the column</td>
<td></td>
</tr>
<tr>
<td>Transition metals: electronegativity increases down the column</td>
<td></td>
</tr>
<tr>
<td>Consider M-C bonds: Strength ~ Orbital overlap</td>
<td></td>
</tr>
<tr>
<td>2.0 B 2.5 C 3.0 N 3.4 O 4.0 F 4.0 Ne</td>
<td>Al 1.6 Si 1.9 P 2.2 S 2.6 Cl 3.1 Ar</td>
</tr>
<tr>
<td>Ln 1.1 1.3 Ti 1.5 V 1.6 Cr 1.6 Mn 1.6 Fe 1.8 Co 1.9 Ni 1.9 Cu 1.9 Zn 1.7 Ga 1.8 Ge 2.0 As 2.2 S 2.5 Br 2.9 Kr</td>
<td></td>
</tr>
<tr>
<td>Ln 1.1 1.3 Y 1.2 Zr 1.3 Nb 1.6 Mo 2.1 Tc 1.9 Ru 2.2 Rh 2.3 Pd 2.2 Ag 1.9 Cd 1.7 In 1.6 Sn 1.8 Sb 2.0 Te 2.1 I 2.6 Xe</td>
<td></td>
</tr>
<tr>
<td>Ln 1.1 1.3 La 1.1 Hf 1.3 Ta 1.5 W 2.3 Re 1.9 Os 2.2 Ir 2.2 Pt 2.3 Au 2.5 Hg 2.0 Tl 1.6 Pb 1.9 Bi 2.0 Po 2.0 At 2.2 Rn</td>
<td></td>
</tr>
<tr>
<td>Lanthanoids and Actinoids: 1.1 – 1.3</td>
<td></td>
</tr>
<tr>
<td>Alkali and main group, electronegativity decreases down the column</td>
<td></td>
</tr>
<tr>
<td>Transition metals: electronegativity increases down the column</td>
<td></td>
</tr>
<tr>
<td>Consider M-C bonds: Strength ~ Orbital overlap</td>
<td></td>
</tr>
<tr>
<td>2.0 B 2.5 C 3.0 N 3.4 O 4.0 F 4.0 Ne</td>
<td>Al 1.6 Si 1.9 P 2.2 S 2.6 Cl 3.1 Ar</td>
</tr>
<tr>
<td>Ln 1.1 1.3 Ti 1.5 V 1.6 Cr 1.6 Mn 1.6 Fe 1.8 Co 1.9 Ni 1.9 Cu 1.9 Zn 1.7 Ga 1.8 Ge 2.0 As 2.2 S 2.5 Br 2.9 Kr</td>
<td></td>
</tr>
<tr>
<td>Ln 1.1 1.3 Y 1.2 Zr 1.3 Nb 1.6 Mo 2.1 Tc 1.9 Ru 2.2 Rh 2.3 Pd 2.2 Ag 1.9 Cd 1.7 In 1.6 Sn 1.8 Sb 2.0 Te 2.1 I 2.6 Xe</td>
<td></td>
</tr>
<tr>
<td>Ln 1.1 1.3 La 1.1 Hf 1.3 Ta 1.5 W 2.3 Re 1.9 Os 2.2 Ir 2.2 Pt 2.3 Au 2.5 Hg 2.0 Tl 1.6 Pb 1.9 Bi 2.0 Po 2.0 At 2.2 Rn</td>
<td></td>
</tr>
<tr>
<td>Lanthanoids and Actinoids: 1.1 – 1.3</td>
<td></td>
</tr>
<tr>
<td>Alkali and main group, electronegativity decreases down the column</td>
<td></td>
</tr>
<tr>
<td>Transition metals: electronegativity increases down the column</td>
<td></td>
</tr>
<tr>
<td>Consider M-C bonds: Strength ~ Orbital overlap</td>
<td></td>
</tr>
<tr>
<td>2.0 B 2.5 C 3.0 N 3.4 O 4.0 F 4.0 Ne</td>
<td>Al 1.6 Si 1.9 P 2.2 S 2.6 Cl 3.1 Ar</td>
</tr>
<tr>
<td>Ln 1.1 1.3 Ti 1.5 V 1.6 Cr 1.6 Mn 1.6 Fe 1.8 Co 1.9 Ni 1.9 Cu 1.9 Zn 1.7 Ga 1.8 Ge 2.0 As 2.2 S 2.5 Br 2.9 Kr</td>
<td></td>
</tr>
<tr>
<td>Ln 1.1 1.3 Y 1.2 Zr 1.3 Nb 1.6 Mo 2.1 Tc 1.9 Ru 2.2 Rh 2.3 Pd 2.2 Ag 1.9 Cd 1.7 In 1.6 Sn 1.8 Sb 2.0 Te 2.1 I 2.6 Xe</td>
<td></td>
</tr>
<tr>
<td>Ln 1.1 1.3 La 1.1 Hf 1.3 Ta 1.5 W 2.3 Re 1.9 Os 2.2 Ir 2.2 Pt 2.3 Au 2.5 Hg 2.0 Tl 1.6 Pb 1.9 Bi 2.0 Po 2.0 At 2.2 Rn</td>
<td></td>
</tr>
</tbody>
</table>
Ready; Catalysis
Organometallics: bonding

(n+1) p orbitals

\[\begin{align*}
 &p_z \\
 &p_x \\
 &p_y
\end{align*} \]

\((n+1) \) s orbital

\[\begin{align*}
 &s
\end{align*} \]

n d orbitals

\[\begin{align*}
 &d_{xy} \\
 &d_{xz} \\
 &d_{yz} \\
 &d_{x^2-y^2} \\
 &d_{z^2}
\end{align*} \]

lobes between axes
- Centrosymmetric
- Lobes 90° apart

lobes on axes
- 9 orbitals, 9 bonds possible
- Hard to fit 9 ligands around most metals
- Usually up to 6 ligands, 3 non-bonding orbitals

Simple bonding:

- Can be covalent or dative (Lewis base)
- Same representation for both

\[\begin{align*}
 &\text{L}_n\text{Zr} \quad \text{H} \\
 &\text{L}_n\text{Os} \\
 &\text{L}_n\text{Pd}
\end{align*} \]

Note: Ln used if we don't know (or don't care) about other ligands on the metal - analogous to "R" for organic chemists

\[\begin{align*}
 &\pi \\
 &\text{Covalent: } \text{L}_n\text{Cr} \quad \text{OMe} \\
 &\text{Dative (metal can accept or donate e-)}
\end{align*} \]

\[\begin{align*}
 &\text{Cl}_3\text{Ti} \equiv \text{Cl} \\
 &\text{Cl}_3\text{Ti} = \text{Cl}^+ \\
 &\text{(OC)}_4\text{Fe} \equiv \text{CO} \\
 &\text{(OC)}_4\text{Fe} = \text{CO}^+ \\
 &\text{L}_n\text{Pd} \\
 &\text{L}_n\text{Pd}^-
\end{align*} \]
Ionic Bonding: Driven by electrostatics

- Strongest bond when high opposite charges interact.
- Charge differences are reflected in electronegativity differences.
- Therefore large electronegativity differences give stronger bonds.

\[E_i = f(-Q_M Q_L) = f(-\epsilon_M - \epsilon_L) \]

ML bonding for early M is substantially ionic

Covalent Bonding: Driven by Overlap

- Strongest covalent bond when orbitals of similar energy interact
- Strength of interaction directly proportional to orbital overlap (matching size)
- Strength of interaction inversely proportional to difference in electronegativity.

\[E_c = f(\frac{\text{orbital overlap}}{\epsilon_M - \epsilon_L}) \]

ML bonding for late M is substantially covalent
Hard nucleophiles (i.e. ligands): Low E HOMO, high charge density

Hard electrophiles (i.e. metals): High E LUOM, high charge density

Hard-Hard interactions largely ionic (e.g. CsF)

Soft nucleophiles: High E HOMO, low charge density

Soft electrophiles: Low energy LUMO, low charge density

Soft-Soft interactions largely covalent (e.g. MeCu)
Hard/Soft effects on ligand binding

$\text{[M}_{\text{aq}}]^n \quad + \quad X^- \quad \xrightarrow{K_{\text{eq}}} \quad \text{[MX}_{\text{aq}}]^{n-1}$

$\text{Log}[K_{\text{eq}}]$

<table>
<thead>
<tr>
<th>M^+</th>
<th>F^-</th>
<th>Cl^-</th>
<th>Br^-</th>
<th>I^-</th>
</tr>
</thead>
<tbody>
<tr>
<td>H^+</td>
<td>3</td>
<td>-7</td>
<td>-9</td>
<td>-9.5</td>
</tr>
<tr>
<td>Zn^{+2}</td>
<td>0.7</td>
<td>-0.2</td>
<td>-0.6</td>
<td>-1.3</td>
</tr>
<tr>
<td>Cu^{+2}</td>
<td>1.2</td>
<td>0.05</td>
<td>0.03</td>
<td>-</td>
</tr>
<tr>
<td>Hg^{+2}</td>
<td>1.0</td>
<td>6.7</td>
<td>8.9</td>
<td>12.9</td>
</tr>
<tr>
<td>ligands</td>
<td>charge</td>
<td># e-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR, NR<sub>2</sub>, SR</td>
<td>-1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F, Cl, Br, I</td>
<td>-1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR<sub>3</sub>, PR<sub>3</sub>, OR<sub>2</sub></td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ketone</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>triplet (Schrock) carbene</td>
<td>-2</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>singlet (Fischer) carbene</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-Heterocyclic Carbenes (NHC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ligands</th>
<th>charge</th>
<th># e-</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\text{M} = \text{M}]</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>[\text{M} = \text{M}]</td>
<td>-1</td>
<td>4</td>
</tr>
<tr>
<td>[\text{M} = \text{C}=\text{O}] or [\text{M} = \text{C} = \text{M}]</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>[\text{M} = \text{O}]</td>
<td>-2</td>
<td>4</td>
</tr>
<tr>
<td>[\text{M} = \text{O}]</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>[\text{M} = \text{O}]</td>
<td>-2</td>
<td>4</td>
</tr>
</tbody>
</table>

BF₄, SbF₆, B(C₆F₅)₄, B[C₆H₃-(CF₃)₂]₄, OTf
Organometallics: phosphines

On Phosphines

Strong \(\sigma\)-donors

\[
\begin{align*}
\text{M} & \quad \text{PR}_3 \\
\sigma\text{-donation} & \\
\text{PCl}_3 < \text{P(OR)}_3 < \text{PPh}_3 < \text{PR}_3
\end{align*}
\]

Strong \(\pi\)-acceptors

\[
\begin{align*}
d_M & \rightarrow d_P \\
d_M & \rightarrow \sigma^*_P-R
\end{align*}
\]

Cone Angle

\[
\begin{align*}
\text{ligand} & \quad \theta \\
\text{PF}_3 & \quad 104 \\
\text{P(OMe)}_3 & \quad 107 \\
\text{PMe}_3 & \quad 118 \\
\text{PPhMe}_2 & \quad 122 \\
\text{dppe} & \quad 125 \\
\text{PET}_3 & \quad 132 \\
\text{PPh}_3 & \quad 145 \\
\text{PCy}_3 & \quad 170 \\
\text{P(tBu)}_3 & \quad 182 \\
\text{H} & \quad 75 \\
\text{Me} & \quad 90 \\
\text{CO} & \quad 95 \\
\text{Cp} & \quad 136 \\
toleman \\
\text{Chem Rev. 1977, 313}
\end{align*}
\]

Chiral and modular

- **BINAP**
- **DuPhos**
- **DIPAMP**

Orpen Chem. Com. 1985, 1310
N-Heterocyclic Carbenes (NHC's)

Characteristics:
- Neutral, 2e- donor
- Strong σ-donor (similar to phosphine)
- Weak π acceptor
- Modular
- M(NHC) complexes:
 - Often air stable
 - Thermally and hydrolytically stable
 - E- rich

Little backbonding - similar to olefin

Synthesis: 3 common methods (see Herrman review)

- Formation of NHCs from ketones, amines, and other compounds.
Applications:

Olefin metathesis

Grubb’s 2nd generation catalyst

Optically active versions have been made

Almost all Pd-catalyst reactions work using NHCs. Heck, Suzuki, Stille, Buchwald-Hartwig, Sonagashira...

Ni, Fe and Ir chemistry also reported. Like with phosphines, best ligand is case-dependent.

Two most popular NHC precursors: (bulky NAr to prevent dimer formation)

For asymmetric hydrogenation

Burgess, JACS, 2001, 8878

Asymmetric metathesis

Grubbs, ACIEE, 2006, 7591;
JACS, 2006, 1840

Conjugate addition

Hoveyda, ACIEE, 2007, 1097
Conclusions:
M-C bond strength correlates with H-C bond strength
CH₃>1°>2°>3°
sp>sp²>sp³

Background:
Direct observation of C-H insertion
Bergman, JACS, 1982, 352

Determination of relative M-X bond strengths
Bergman, Polyhedron, 1988, 1429

Conclusions:
M-C bond strength correlates with H-C bond strength
CH₃>1°>2°>3°
sp>sp²>sp³
Bryndza, Bercaw et al. JACS, 1987, 1444

Observed experimentally:

\[\text{L}_n\text{M}^{-} \text{X} + \text{H}^{-} \text{Y} \rightleftharpoons \text{ML}_n^{-} \text{Y} + \text{H}^{-} \text{X} \quad \text{K}_{eq} \approx 1 \]

\[\text{Cp}^*\text{(PMe}_3)_3\text{RuOH} + \text{CH}_3\text{COCH}_3 \rightleftharpoons \text{Cp}^*\text{(PMe}_3)_3\text{RuCH}_2\text{COCH}_3 + \text{H}_2\text{O} \quad \text{K}_{eq} = 2.3 \]

Exceptions: M-H (5-15 kcal too strong)
M-OR too strong in d^0
M-S, M-Si too strong in late TM's. But:

\[\text{Cp}^*\text{(PMe}_3)_3\text{RuSH} + \text{HSi(OEt)}_3 \rightleftharpoons \text{Cp}^*\text{(PMe}_3)_3\text{RuSi(OEt)}_3 + \text{H}_2\text{S} \quad \text{K}_{eq} = 0.75 \]
13C resonance for different L's:

Representative 'common NHC' aka SiMes, found in Grubbs II, 178 ppm on this chart

Stronger L = more downfield

Huynh, *Organomet.* 2009, 5395
Same ligand, different metal = different reactivity

olefin as nucleophile

\[
\text{Bu} = \text{OEt} + \text{Ti(OiPr)}_4 \xrightarrow{c-C_6H_{11}MgCl} \text{Bu} \xrightarrow{\text{RO}} \text{Bu} \xrightarrow{\text{RO}} \text{Bu} \rightarrow \text{MeOH} \xrightarrow{\text{Bu}} 95\%
\]

see Chem Rev 2000, 2835

olefin as electrophile

\[
\text{C}_6H_{17} + \text{PdCl}_2 \xrightarrow{10\% \text{ CuCl}} \text{DMF/H}_2\text{O} \rightarrow \text{ClPd} \xrightarrow{\text{C}_6H_{17}} \text{OH} \xrightarrow{-\text{ClPdH}} \text{O} \xrightarrow{\text{Synthesis, 1984, 369}} \text{C}_6H_{17}
\]

Same metal, different ligand = different reactivity

electrophilic Pd(allyl)

\[
\text{Ph} = \text{OAc} + \text{E} \xrightarrow{\text{NaH, cat. Pd(PPh)}_3} \text{Ph} \xrightarrow{\text{E}} \text{E} \xrightarrow{\text{Chem Rev 1996, 395}} \text{Ph}
\]

nucleophilic Pd(allyl)

\[
\text{Ph} = \text{H} \xrightarrow{\text{cat. Pd(phenyl)}_3} \text{Ph} \xrightarrow{\text{Cl} \text{SnBu}_3} \text{OH} \xrightarrow{88\% \text{ ACIEE, 2003, 3656}} \text{Ph}
\]
Ready; Catalysis

Organometallics: Electronic effects

\[\text{eq 1} \]

Kurosawa, JACS, 1980, 6996

\[\text{eq 2} \]

Kurosawa, JACS, 1987, 6333

\[\text{eq 3} \]

Stahl, JACS, 2004, 14832
Electron Counting and Oxidation State

1. Decide what charge a ligand has
2. Determine # e’s donated
3. Assume Metal has charge equal in magnitude, opposite in charge to sum of ligands
4. Oxidation state = charge on metal
5. d e- count = #e- for neutral element – charge
6. Total e- count = d e- + sum of ligand electrons
7. 18 e- is stable # of e- (noble gas configuration), 16 e- for square planar

Wilkinson’s catalyst

[Chemical structure image]

Noyori hydrogenation catalyst

[Chemical structure image]

Zeise’s salt
Crabtree's dehydrogenation catalyst

Total ligand charge = -3
Oxidation state = +3
Total metal e- = 6
Total ligand e- = 12
Total e- count = 18

Brintzinger's ligand

Total ligand charge = -4
Oxidation state = +4
Total metal e- = 0
Total ligand e- = 16
Total e- count = 16

JACS, 2003, 7900 propargylic alcohol substitution

Total ligand charge = -3
Oxidation state = +3
Total metal e- = 5
Ru-Ru bond = 1e-/Ru
Total ligand e- = 12
Total e- count = 18

Note: electron count same for each Ru b/c they are equivalent

COD: common for Ni and hydrogenation cat (why?)

Crabtree catalyst (homogeneous hydrogenation)

Total ligand charge = -1
Oxidation state = +1
Total metal e- = 8
PF6 contribution = 0
Total ligand e- = 8
Total e- count = 16
Geometries of transition metal complexes
Balance between steric (maximum ligand separation) and electronic (minimum filled antibonding, evenly distributed nb)
For MO treatment, see Albright, Tetrahedron, 1982, 1339.

Octahedral
most common geometry
for ML6; often 18e-, often for d6

```
O=C PR₃ CO
O=C PR₃ H
```

first eg of H₂ σ-complex
jacs 1984, 451

Square Planar
very common for d8 metals
16e- very stable (17th e- would be antibonding)

```
Ph₂ Pd Ph₂
PPh₃
```

intermediate in ketone arylation
Hartwig, Jacs, 2001, 5816

Tetrahedral
Common for d10, d4 and d0
sterically best way for ML4

```
Ph₃P Pd PPh₃
```

aka "tetrakis"
probably most common Pd source
Geometries of transition metal complexes, cont.

Some less common geometries

Trigonal bipyramidal

Note both are ML5, 18e-complexes of d8 metals

Square pyramidal

asymmetric aldol catalyst
evans, Jacs, 2003, 8706

Bent
giant phosphine precludes 4th ligand

Hartwig, Jacs, 2002, 9346

Linear
common for Cu, Ag and Au

Cl—Au—PPh3

For a list of geometry by metal and oxidations state, see
Jeffrey Moore's web site:
http://sulfur.scs.uiuc.edu/
Transition metals are such good catalysts because they can change oxidation states:

A useful reference, and fun for the whole family:
Web page for Jeffrey S. Moore (U. Illinois, chemistry)
http://sulfur.scs.uiuc.edu/
Under the ‘periodic table’ link
MO Description of σ bonding in ML₆

Metal Valence Orbitals

Linear Combinations of Ligand σ Donor Orbitals

18 e- Rule:
The octahedral geometry is strongly favored by d⁶ metals (e.g. Fe (II), Ru (II), Rh(III)). A stable electronic configuration is achieved at 18 e⁻, where all bonding (mostly L character) and non-bonding orbitals (mostly M d character) are filled.

Mulliken symbols: in an octahedral environment, the degenerate d orbitals split into orbitals of t₂g and e_g symmetries. Orbitals with different symbols have different symmetries and cannot interact.

Albright *Tetrahedron* 1982 (38) 1339.
MO Description of σ bonding in ML₄ square planar

Metal Valence Orbitals

- a_{2u}
- e_u
- a_{1g}
- b_{1g}
- b_{2g}
- e_g
- d_{xy}
- d_{yz}

Linear Combinations of Ligand σ Donor Orbitals

- HOMO
- LUMO

16 e⁻ Rule:
The square planar geometry is favored by d⁸ metals (e.g., Ni(II), Pd(II), Pt(II), Ir(I), Rh(I)). A stable electronic configuration is achieved at 16 e⁻, where all bonding and non-bonding orbitals are filled. Spin-paired compounds display diamagnetic behavior (i.e., weakly repelled by magnetic fields) and may be readily characterized by NMR.

In a square planar ligand field, the degenerate d orbitals split into orbitals of a_{1g}, b_{1g}, e_g, and b_{2g} symmetries. The degenerate p orbitals split into orbitals of e_u and a_{2u} symmetries.

When combining orbitals, the resulting MO's must be symmetrically dispersed between bonding and antibonding. Thus, combining 3 orbitals (i.e., a_{1g}'s) requires one of the orbitals to be non-bonding.
MO Description of σ bonding in ML$_4$ tetrahedral

The tetrahedral geometry is electronically favored by d4 or d10 metal complexes where the non-bonding orbitals are either 1/2 or entirely filled, respectively.
Organometallic Reaction Mechanisms

Ligand association/dissociation

CuBr + PBu₃ → (PBu₃)ₙCuBr
insoluble → soluble

NOTE: No ox. state change

Pd
 inactive catalyst
 active catalyst for cross coupling

Ligand Exchange:
Associative - common for 16e- complexes

rate = k[py][Pt]
rates will depend on nature (sterics, electronics) of Nu and MLn

Py + Et₃P/Pr/Cl → Et₃P/Pr/Cl
H H
PEt₃ PEt₃

Dissociative - common for 18 e- complexes
Rate will depend on nature of leaving L, sometimes on new L'

-P-L slow:
Rate = k[ML]

+L' slow:
Rate = Kk₄[L][ML][L']

Hydrogenation
Ready; Catalysis

Organometallics: ligand exchange

\[\text{Nu} + \text{CH}_3\text{I} \rightarrow \text{Nu} \text{CH}_3 \] (Rxn 1)

\[\begin{align*}
\text{Nu}^+ \text{MeI} &+ \text{Pt(Py)}_2\text{Cl}_2 \\
\text{MeOH} & \rightarrow 0.00 \\
\text{AcO}^- & \rightarrow 2.00 \\
\text{Et}_3\text{N} & \rightarrow 3.07 \\
\text{Cl}^- & \rightarrow 3.04 \\
\text{Py} & \rightarrow 3.19 \\
\text{I}^- & \rightarrow 5.46 \\
\text{PhS}^- & \rightarrow 7.23 \\
\text{Ph}_3\text{P} & \rightarrow 8.99
\end{align*} \]

\[\begin{align*}
\text{log (krel)} &\quad \text{log (krel)} \\
\text{Nu}^+ \text{MeI} &+ \text{Pt(Py)}_2\text{Cl}_2 \\
\text{MeOH} & \rightarrow 0.00 \\
\text{AcO}^- & \rightarrow 2.00 \\
\text{Et}_3\text{N} & \rightarrow 3.07 \\
\text{Cl}^- & \rightarrow 3.04 \\
\text{Py} & \rightarrow 3.19 \\
\text{I}^- & \rightarrow 5.46 \\
\text{PhS}^- & \rightarrow 7.23 \\
\text{Ph}_3\text{P} & \rightarrow 8.99
\end{align*} \]

Graph:

- Reaction 1: Log krel vs. Log krel
- Reaction 2: Log krel vs. Log krel
Exchange rates vary over 20 orders of magnitude

Figure 1.26. Range of water exchange rate constants (log k_{ex}(s$^{-1}$)) and mean residence times (s) for primary shell water molecules on aqua metal ions at 25 °C (the dotted line represents Taube's inert/labile boundary [79])

Oxidative Addition and Reductive Elimination

\[\text{LnM}(n) + X-Y \xrightarrow{\text{oxidative addition}} L_{n}M^{(n+2)} \xrightarrow{\text{reductive elimination}} \]

O.A. and R.E. involve 2e- change at M, increase # ligands by 2

"O.A." and "R.E." give NO information on mechanism: can be concerted 3-centered, SN2-like or radical

Note cis product from concerted OA

Radical chain mech.
Stereochemical Issues

\[
\begin{align*}
R_1 & \quad \text{cis addition, olefin stereochemistry} \\
R_2 & \quad \text{is maintained} \\
R_3 & \quad X = I > Br \sim OTf \gg Cl \sim OTs
\end{align*}
\]

Vinyl and Aryl C-X much more reactive than alkyl C-X despite more \textit{e}-rich alkyl C-X

Why? Precoordination

Precoordination with allylic substrates allows O.A. to moderately activated bonds:

\[
\begin{align*}
\text{OR} & \rightarrow [\text{C} \cdots \text{Pd}] & \rightarrow \text{Backside (SN2-like) attack at C} \\
\text{OR} = OAc, OCO2R, OP(O)(OR)2, OTs, I, Br, Cl
\end{align*}
\]

Precoordination can even allow activation of C-H bonds in some cases:

Rhazinilam
Sames, \textit{JACS}, 2002, 6900
Oxidative Addition: Thermodynamics

Bond strength is reflected in ease of O.A., with exceptions

<table>
<thead>
<tr>
<th>Rxn</th>
<th>BDE (kcal/mol) of Cleaved Bond</th>
<th>est ΔG for O.A.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ir = Ir(I)</td>
<td>56</td>
<td>-25</td>
</tr>
<tr>
<td></td>
<td>104</td>
<td>-6</td>
</tr>
<tr>
<td>88</td>
<td>+6</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>+8</td>
<td></td>
</tr>
</tbody>
</table>

M-H bonds are stronger than we might predict
O.A. to C-H and C-C remain very challenging, but could be valuable (more on this later in the course)
A picture of oxidative addition from calculations.

From CHNF, figure 5.2
Oxidative addition: reactivity trends

Reaction rate increases with electron density on Pd

Amatore, *Organometallics*, 1995, 1818
Oxidative addition: reactivity trends

Reaction rate decreases with electron density on ArX

\[\text{OMe} < \text{H} < \text{Me} < \text{tBu} < \text{Cl} < \text{CO}_2\text{Et} < \text{CF}_3 < \text{CN} < \text{NO}_2 \]

\[k_{\text{rel}} = \frac{k_{\text{obs, X}}}{k_{\text{obs, X=H}}} \]

\[y = 2.547x + 0.078 \]

Jutand, *OM*, 1995, 1810
Oxidative addition: reactivity trends

\[
\text{Ni(PPh}_3\text{)}_4 + \text{ArCl} \rightarrow \text{20 }^\circ\text{C} \rightarrow (\text{PPh}_3)_2\text{NiAr(X)}
\]

Kink indicates change in mechanism

![Graph showing relative rates of oxidative addition of substituted aryl halides with correlation line.](Image)

Figure 1 Correlation of relative rates of oxidative addition of substituted aryl halides with σ (D. M. McDaniel and H. C. Brown, *J. Org. Chem.*, 1988, 23, 420) at 0.02M-PPh$_3$
Oxidative addition: reactivity trends

With sp3 electrophiles, SN2 pathway dominates with Pd(0)
Rxns show other traits of SN2 (solvent effects, leaving group trends)

From Fu, *ACIEE*, 2002, 3910
See also Fu, *ACIEE*, 2003, 5749
Direct single electron OA:

\[R \text{-} X + 2 [\text{Co(CN)}_5]^{-3} \rightarrow \left\{ R \cdot + X\text{-}\text{Co(CN)}_5^{-3} \right\} \rightarrow R\text{-}\text{Co(CN)}_5^{-3} + X\text{-}\text{Co(CN)}_5^{-3} \]

\(X = \text{halide} \)

Net single electron OA

\[[\text{CpFe(CO)}_2]_2 + X_2 \rightarrow \left\{ \text{CpFe}^{\text{III}}X_2\text{(CO)}_2 + \text{CpFe}^{\text{I}}(\text{CO})_2 \right\} \rightarrow 2 \text{CpFe}^{\text{II}}X\text{(CO)}_2 \]

Single electron OA in catalysis

\[
\begin{align*}
\text{(±)} & \quad \text{Br} \\
\text{Hex} \quad \text{ZnBr} & \quad \text{NiBr}_2 \cdot \text{diglyme (10 mol\%)} & \quad \text{13 mol\%} \\
\text{achiral} & \quad \text{NiLn} & \quad \text{nC}_6\text{H}_{13} \\
\text{L}_n\text{Ni(0)} & \quad \text{Br} & \quad \text{NiLn} \\
\end{align*}
\]

Fu, JACS, 2005, 10482
Reductive elimination: reactivity trends (substrate)

Hartwig, *JACS*, 2003, 16347
OM, 2003, 2775
Reductive elimination: reactivity trends (substrate + catalyst)

\[
\begin{align*}
\text{R} & \quad \% \text{ Yield} \\
H & \quad >90 \\
CF_3 & \quad 95 \quad k_{CF_3}/k_H \approx 2
\end{align*}
\]

\[
\begin{align*}
\text{R' R} & \quad \% \text{ Yield} \\
H & \quad 2\text{-Me} \quad 5\text{-}25 \\
Ph_5 & \quad 2\text{-Me} \quad 66 \\
Ph_5 & \quad 4\text{-Me} \quad 0
\end{align*}
\]

\[
\begin{align*}
110 \degree C & \\
110 \degree C
\end{align*}
\]
Oxidation-induced reductive elimination

\[
\begin{align*}
&\text{PF}_6^- \\
&\text{ClMg} \\
\text{MeO}_2\text{C}\text{Fe(CO)}_3^+ &\xrightarrow{\text{ox. at M}} \text{MeO}_2\text{C}\text{Fe(CO)}_3^{18-} \\
&\text{Ce(NH}_4)_2\text{(NO}_3)_6 \\
\text{MeO}_2\text{C}\text{Fe(CO)}_3^{17-} &\xrightarrow{69\%} \text{CO}_2\text{Me}
\end{align*}
\]

\[
\begin{align*}
&\text{H}_3\text{C} \text{CH}_3 \\
&\text{ox. at L} \\
\text{MeO}_2\text{C}\text{Fe(CO)}_3^{18-} &\xrightarrow{\text{H}_2\text{O}_2} \text{MeO}_2\text{C}\text{Fe(CO)}_3^{18-} \\
&-\text{CO}_2, -\text{HO}^- \\
\text{MeO}_2\text{C}\text{Fe(CO)}_2^{16-} &\xrightarrow{\sim 70\%} \text{CO}_2\text{Me}
\end{align*}
\]

Donaldson, OL, 2005, 2047
Note: 'CO insertion' is an unfortunate name because alkyl group moves.

Rate increases with size and nucleophilicity of R
Rarely see double insertion (uphill by ~10 kcal/mol - mostly b/c entropy decrease); exceptions: OL, 2009, 1321.

Rel rate: $k_H / k_{alkyl} \sim 10^7$ for Rh(III) and Co(III) even though insertion into M-R favored thermodynamically

spherical s orbital for H allows overlap with both olefin and M in transition state. Harder with directional orbital

$K > 1$ for e^- poor metals [eg Zr(IV), d^0]
$K < 1$ for e^- rich metals [eg, Pd(II), d^8]
Oxidative addition: applications of Sn2-like OA and carbylation

Coates, JACS, 2007, 4948
agostic interactions: stable intermediates on the way to α- or β-hydride elimination

• Stable interactions often found with electron-poor metals
• Especially common with d^0 metals
• Computation with Ti(carbene) and W(carbyne) estimates BDE \leq 10 kcal/mol (OM, 2006, 118)

Schrock, et al

![Molecular structure diagram](image)

Figure 4. A perspective view of the molecular structure of $\text{Ta}(\sigma^2$-$\text{C}_2\text{Me}_3)(\text{CHMe}_3)(\sigma^2$-$\text{C}_2\text{H}_4)(\text{PMe}_3)$ (2). Except for H(1) and the four ethylene hydrogen atoms, all hydrogen atoms have been omitted for clarity. The thermal ellipsoids do not represent the experimental values (see Figure 3).

Things to note
- Ta(III) carbene (d^2)
- Small Ta-C-H angle (78°)
- Long C-H bond (1.14Å, average here is 1.085Å)
 - i.e. weakening of C-H bond
- Big Ta-C-C angle (170°)
- Unrelated to agostic interactions:
 - Ethylene C’s out of plane (average 0.33Å out of 4H plane)
 - Long ethylene C-C distance (1.48 v. 1.34 when free)
Agostic interactions are likely unobserved intermediates in normal transition metal-catalyzed reactions:

Heck Rxn:

\[
\text{I} \quad + \quad \text{Cyclohexene} \quad \xrightarrow{\text{Pd}(0)} \quad \text{L}\text{Pd(H)}\text{I} \quad + \quad \text{PhC}_{\text{Ph}}
\]

Generation of Pd(0)

\[
\text{PdCl}_2 \quad \xrightarrow{\text{Et}_2\text{Zn}} \quad \text{transmetalation} \quad \xrightarrow{-\text{CH}_2\text{CH}_2} \quad \text{Pd}^{\text{II}} \quad \xrightarrow{\beta\text{-Hydride elim}} \quad \text{Pd}^{\text{III}} - \text{H} \quad \xrightarrow{\text{red. elim.}} \quad \text{L}_n\text{Pd}(0)
\]

α-agostic interactions can happen, too

\[
\text{Cp}_2\text{ZrCl}_2 \quad \xrightarrow{\text{lewis acid}} \quad \text{catalyst for ethylene polymerization cation stabilized by agostic interaction}
\]

likely intermediate in α-elimination:

\[
\text{Cp}^*\text{TaClBn}_3 \quad \xrightarrow{-\text{PhCH}_3} \quad \text{Ta}_{\text{Ph}}_{\text{Cl}}_{\text{Cp}^*_{\text{Bn}}}
\]

Schrock, Accts, 1979, 98
Agostic interaction can be dynamic

Nolan, ACIEE, 2005, 2512

'cyclometalated' Ir(III)bis(NHC)
A C-H complex observed crystallographically:

Reversible deprotonation with Et3N to form Ar-Rh bond

Milstein, JACS, 1998, 12539
Hydroformylation (7 bil Kg/yr)

\[
\begin{align*}
\text{RCH} &= \text{RCH}_2\text{CHO} + \text{RCH}_2\text{CHO} \\
\text{cat. Rh(I)} &\quad \text{H}_2/\text{CO (syn gas)} \\
\end{align*}
\]

\[
\begin{align*}
\text{HRh(CO)}_2\text{L}_2 &\quad \text{HRh(CO)}\text{L}_2 \\
\text{H}_2 &\quad \text{R} \\
\text{RCH}_2\text{Rh(CO)}\text{L}_2 &\quad \text{RCH}_2\text{Rh(CO)}_2\text{L}_2 \\
\text{CO} &\quad \text{RCH}_2\text{Rh(CO)}\text{L}_2 \rightarrow \text{RCHO} \\
\end{align*}
\]
4-centered reactions:

\[
\begin{align*}
2+2 & \quad R_NH_2 + R' \equiv \equiv R' \\
\text{cat. } & \quad \text{cat. } C_pZr(NHR)_2 \\
& \quad \text{NR} \\
& \quad ZrC_p \\
\begin{bmatrix}
R & N & \equiv \\
& Zr & \equiv \\
C_p & C_p & C_p \\
& R' & R'
\end{bmatrix} & \quad \rightarrow & \quad \rightarrow & \quad \rightarrow
\end{align*}
\]

see Eur. JOC, 2003, 935

\(\sigma\)-bond metathesis

Tilley, Jacs, 2003, 7971
Transmetallation:

\[R-M + M'-X \rightarrow R-M' + M-X \]

Stoichiometric Use:
Great way to make Grinards, alkyl zincs, cuprates, stannanes etc. Esp useful on small scale where O.A. to R-X not possible

In catalytic cycle:

- T.M. usually from more electropositive M to more electronegative M
- Endothermic T.M.'s can be part of catalytic cycle if R-M' subsequently reacts
- Likely by associative mech for coordinatively unsaturated M
- Likely metathesis for coordinatively saturated